

 [image: Cover image]
 Knot DNS Documentation

 Release 3.4.1

 Copyright 2010–2024, CZ.NIC, z.s.p.o.

 2024-10-14

Welcome to Knot DNS's documentation!

	Introduction
	What is Knot DNS

	Knot DNS features

	License

	Requirements
	Hardware

	Operating system

	Required libraries

	Optional libraries

	Installation
	Installation from a package

	Installation from source code

	Configuration
	Simple configuration

	Zone templates

	Access control list (ACL)

	Secondary (slave) zone

	Primary (master) zone

	Dynamic updates

	Automatic DNSSEC signing

	Catalog zones

	DNS over QUIC

	DNS over TLS

	Query modules

	Performance Tuning

	Operation
	Configuration database

	Dynamic configuration

	Secondary (slave) mode

	Primary (master) mode

	Reading and editing zones

	Reading and editing the zone file safely

	Zone loading

	Journal behaviour

	Handling zone file, journal, changes, serials

	Zone bootstrapping on secondary

	Zone expiration

	DNSSEC key states

	DNSSEC key rollovers

	DNSSEC shared KSK

	DNSSEC delete algorithm

	DNSSEC Offline KSK

	DNSSEC multi-signer

	DNSSEC keys import to HSM

	Daemon controls

	Logging

	Data and metadata backup

	Statistics

	Mode XDP

	Troubleshooting
	Reporting bugs

	Generating backtrace

	Crash caused by a Bus error

	Configuration Reference
	Description

	Comments

	Including configuration

	Clearing configuration sections

	module section

	server section

	xdp section

	control section

	log section

	statistics section

	database section

	keystore section

	key section

	remote section

	remotes section

	acl section

	submission section

	dnskey-sync section

	policy section

	template section

	zone section

	Modules
	authsignal – Automatic Authenticated DNSSEC Bootstrapping records

	cookies — DNS Cookies

	dnsproxy – Tiny DNS proxy

	dnstap – Dnstap traffic logging

	geoip — Geography-based responses

	noudp — No UDP response

	onlinesign — Online DNSSEC signing

	probe — DNS traffic probe

	queryacl — Limit queries by remote address or target interface

	rrl — Response rate limiting

	stats — Query statistics

	synthrecord – Automatic forward/reverse records

	whoami — Whoami response

	Utilities
	knotd – Knot DNS server daemon

	knotc – Knot DNS control utility

	keymgr – Key management utility

	kjournalprint – Knot DNS journal print utility

	kcatalogprint – Knot DNS catalog print utility

	kzonecheck – Knot DNS zone file checking tool

	kzonesign – DNSSEC signing utility

	kdig – Advanced DNS lookup utility

	khost – Simple DNS lookup utility

	knsec3hash – NSEC hash computation utility

	knsupdate – Dynamic DNS update utility

	kxdpgun – DNS benchmarking tool

	Migration
	Upgrade 2.4.x to 2.5.x

	Upgrade 2.5.x to 2.6.x

	Upgrade 2.6.x to 2.7.x

	Upgrade 2.7.x to 2.8.x

	Upgrade 2.8.x to 2.9.x

	Upgrade 2.9.x to 3.0.x

	Upgrade 3.0.x to 3.1.x

	Upgrade 3.1.x to 3.2.x

	Upgrade 3.2.x to 3.3.x

	Upgrade 3.3.x to 3.4.x

	Knot DNS for BIND users

	Appendices
	Compatible PKCS #11 Devices

Introduction

What is Knot DNS

Knot DNS is a high-performance open-source DNS server. It
implements only the authoritative domain name service. Knot DNS
can reliably serve TLD domains as well as any other zones.

Knot DNS benefits from its multi-threaded and mostly lock-free
implementation which allows it to scale well on SMP systems and
operate non-stop even when adding or removing zones.

The server itself is accompanied by several utilities for general DNS
operations or for maintaining the server.

For more info and downloads see www.knot-dns.cz [https://www.knot-dns.cz].

Knot DNS features

DNS features:

	Primary and secondary server operation

	Internet (IN) and Chaos (CH) classes

	DNS extension (EDNS0, EDE, EXPIRE)

	UDP, TCP, TLS 1.3, and QUIC protocols

	Zone catalog generation and interpretation

	Minimal responses

	Dynamic zone updates

	DNSSEC with NSEC and NSEC3

	ZONEMD generation and validation

	Transaction signature using TSIG

	Full and incremental zone transfers (AXFR, IXFR)

	Name server identification using NSID or Chaos TXT records

	Resource record types A, NS, CNAME, SOA, PTR, HINFO, MINFO, MX,
TXT, RP, AFSDB, RT, KEY, AAAA, LOC, SRV, NAPTR, KX, CERT, DNAME, APL, DS,
SSHFP, IPSECKEY, RRSIG, NSEC, DNSKEY, DHCID, NSEC3, NSEC3PARAM, TLSA, SMIMEA,
CDS, CDNSKEY, OPENPGPKEY, CSYNC, ZONEMD, SVCB, HTTPS, SPF, NID, L32, L64, LP,
EUI48, EUI64, URI, CAA, WALLET, and Unknown

Server features:

	IPv4 and IPv6 support

	Semantic zone checks

	Server control interface

	Zone journal storage

	Persistent zone event timers

	YAML-based or database-based configuration

	Query processing modules with dynamic loading

	On-the-fly zone management and server reconfiguration

	Multithreaded DNSSEC zone signing and zone validation

	Automatic DNSSEC key management

	Zone data backup and restore

	Offline KSK operation

	PKCS #11 interface

Remarkable module extensions:

	Response rate limiting

	Forward and reverse records synthesis

	DNS request traffic statistics

	Efficient DNS traffic logging interface

	Dnstap traffic logging

	Online DNSSEC signing

	GeoIP response tailoring supporting ECS and DNSSEC

Remarkable supported networking features:

	TCP Fast Open (client and server)

	Opportunistic, strict, and mutual authentication profiles over TLS 1.3 or QUIC

	High-performance UDP, TCP, and QUIC through AF_XDP processing (on Linux 4.18+)

	SO_REUSEPORT (on Linux) or SO_REUSEPORT_LB (on FreeBSD 12.0+) on UDP and by choice on TCP

	Binding to non-local addresses (IP_FREEBIND on Linux, IP_BINDANY/IPV6_BINDANY on FreeBSD)

	Ignoring PMTU information for IPv4/UDP via IP_PMTUDISC_OMIT

License

Knot DNS is licensed under the GNU General Public License [https://www.gnu.org/copyleft/gpl.html]
version 3 or (at your option) any later version. The full text of the license
is available in the COPYING file distributed with source code.

Requirements

Hardware

Knot DNS requirements are not very demanding for typical
installations, and a commodity server or a virtual solution will be
sufficient in most cases.

However, please note that there are some scenarios that will require
administrator's attention and some testing of exact requirements before
deploying Knot DNS to a production environment. These cases include
deployment for a large number of zones (DNS hosting), large number
of records in one or more zones (TLD), or large number of requests.

CPU requirements

The server scales with processing power and also with the number of
available cores/CPUs. Enabling Hyper-threading is convenient if supported.

There is no lower bound on the CPU requirements, but it should support
memory barriers and atomic instructions (i586 and newer).

Network card

The best results have been achieved with multi-queue network cards. The
number of multi-queues should equal the total number of CPU cores (with
Hyper-threading enabled).

Memory requirements

The server implementation focuses on performance and thus can be quite
memory demanding. The rough estimate for memory requirements is
3 times the size of the zone in the plain-text format. Again this is only
an estimate and you are advised to do your own measurements before
deploying Knot DNS to production.

Note

To ensure uninterrupted serving of the zone, Knot DNS
employs the Read-Copy-Update mechanism instead of locking and thus
requires twice the amount of memory for the duration of incoming
transfers.

Operating system

Knot DNS itself is written in a portable way and can be compiled
and run on most UNIX-like systems, such as Linux, *BSD, and macOS.

Required libraries

Knot DNS requires a few libraries to be available:

	gnutls >= 3.6.10

	libedit

	liburcu

	lmdb >= 0.9.15

Note

The LMDB library is included with Knot DNS source code. However, linking
with the system library is preferred.

Optional libraries

International Domain Names support (IDNA2008) in kdig:

	libidn2

Systemd's startup notification mechanism and journald logging:

	libsystemd

Dnstap support in kdig or module dnstap:

	fstrm (and protobuf-c if building from source code)

Linux capabilities(7) support, which allows the server to be started
as a non-root user/group, binding to privileged ports (53), and giving up all
its capabilities, resulting in a completely unprivileged process:

	libcap-ng >= 0.6.4

MaxMind database for geodb support in module geoip:

	libmaxminddb0

DNS-over-HTTPS (DoH) support in kdig:

	libnghttp2

The XDP functionality and kxdpgun
tool. These are only supported on Linux operating systems. See the chapter
Mode XDP for software and hardware
recommendations.

	libbpf

	libxdp (if libbpf >= 1.0)

	libmnl (for kxdpgun)

DNS-over-QUIC (DoQ) support in knotd, kxdpgun,
and kdig:

	libngtcp2 >= 0.17.0 (or embedded one via --enable-quic)

	gnutls >= 3.7.3

	Mode XDP (for knotd and kxdpgun)

Installation

Installation from a package

Knot DNS may already be included in your operating system distribution and
therefore can be installed from packages (Linux), ports (BSD), or via
Homebrew (macOS). This is always preferred unless you want to test the latest
features, contribute to Knot development, or you know what you are doing.

See the project download [https://www.knot-dns.cz/download] page for
the latest information.

Installation from source code

Required build environment

The build process relies on these standard tools:

	make

	libtool

	pkg-config

	autoconf >= 2.65

	python-sphinx (optional, for documentation building)

A GCC or LLVM Clang compiler with C11 support.

Getting the source code

You can find the source code for the latest release on www.knot-dns.cz [https://www.knot-dns.cz].
Alternatively, you can fetch the whole project from the git repository
https://gitlab.nic.cz/knot/knot-dns.git.

After obtaining the source code, compilation and installation is quite a
straightforward process using autotools.

Configuring and generating Makefiles

If compiling from git source, you need to bootstrap the ./configure file first:

$ autoreconf -i -f

In most cases, you can just run configure without any options:

$./configure

For all available configure options run:

$./configure --help

Compilation

After running ./configure you can compile Knot DNS by running
make command, which will produce binaries and other related
files:

$ make

Note

The compilation with enabled optimizations may take a long time. In such
a case the --disable-fastparser configure option can help.

Installation

When you have finished building Knot DNS, it's time to install the
binaries and configuration files into the operation system hierarchy.
You can do so by executing:

$ make install

When installing as a non-root user, you might have to gain elevated privileges by
switching to root user, e.g. sudo make install or su -c 'make install'.

Configuration

Simple configuration

The following example presents a simple configuration file
which can be used as a base for your Knot DNS setup:

Example of a very simple Knot DNS configuration.

server:
 listen: 0.0.0.0@53
 listen: ::@53

zone:
 - domain: example.com
 storage: /var/lib/knot/zones/
 file: example.com.zone

log:
 - target: syslog
 any: info

Now let's walk through this configuration step by step:

	The listen statement in the server section
defines where the server will listen for incoming connections.
We have defined the server to listen on all available IPv4 and IPv6 addresses,
all on port 53.

	The zone section defines the zones that the server will
serve. In this case, we defined one zone named example.com which is stored
in the zone file /var/lib/knot/zones/example.com.zone.

	The log section defines the log facilities for
the server. In this example, we told Knot DNS to send its log messages with
the severity info or more serious to the syslog (or systemd journal).

For detailed description of all configuration items see
Configuration Reference.

Zone templates

A zone template allows a single zone configuration to be shared among several
zones. There is no inheritance between templates; they are exclusive. The
default template identifier is reserved for the default template:

template:
 - id: default
 storage: /var/lib/knot/master
 semantic-checks: on

 - id: signed
 storage: /var/lib/knot/signed
 dnssec-signing: on
 semantic-checks: on
 master: [master1, master2]

 - id: slave
 storage: /var/lib/knot/slave

zone:
 - domain: example1.com # Uses default template

 - domain: example2.com # Uses default template
 semantic-checks: off # Override default settings

 - domain: example.cz
 template: signed
 master: master3 # Override masters to just master3

 - domain: example1.eu
 template: slave
 master: master1

 - domain: example2.eu
 template: slave
 master: master2

Note

Each template option can be explicitly overridden in zone-specific configuration.

Access control list (ACL)

Normal DNS queries are always allowed. All other DNS requests must be
authorized before they can be processed by the server. A zone can have
configured ACL which is a sequence of rules describing
what requests are authorized. An automatic ACL
feature can be used to simplify ACL management.

Every ACL rule can allow or deny one or more request types (actions)
based on the source IP address, network subnet, address range, protocol,
remote certificate key PIN and/or
if the request is secured by a given TSIG key. See keymgr -t
on how to generate a TSIG key.

If there are multiple ACL rules assigned to a zone, they are applied in the
specified order of the acl configuration. The first rule that matches
the given request is applied and the remaining rules are ignored. Some examples:

acl:
 - id: address_rule
 address: [2001:db8::1, 192.168.2.0/24]
 action: transfer

 - id: deny_rule
 address: 192.168.2.100
 action: transfer
 deny: on

zone:
 - domain: acl1.example.com
 acl: [deny_rule, address_rule] # Allow some addresses with an exception

key:
 - id: key1 # The real TSIG key name
 algorithm: hmac-sha256
 secret: 4Tc0K1QkcMCs7cOW2LuSWnxQY0qysdvsZlSb4yTN9pA=

acl:
 - id: deny_all
 address: 192.168.3.0/24
 deny: on # No action specified and deny on implies denial of all actions

 - id: key_rule
 key: key1 # Access based just on TSIG key
 action: [transfer, notify]

zone:
 - domain: acl2.example.com
 acl: [deny_all, key_rule] # Allow with the TSIG except for the subnet

In the case of dynamic DNS updates, some additional conditions may be specified
for more granular filtering. See more in the section Restricting dynamic updates.

Note

If more conditions (address ranges and/or a key)
are given in a single ACL rule, all of them have to be satisfied for the rule to match.

Tip

In order to restrict regular DNS queries, use module queryacl.

Secondary (slave) zone

Knot DNS doesn't strictly differ between primary (formerly known as master)
and secondary (formerly known as slave) zones. The only requirement for a secondary
zone is to have a master statement set. For effective zone synchronization,
incoming zone change notifications (NOTIFY), which require authorization, can be
enabled using automatic ACL or explicit ACL
configuration. Optional transaction authentication (TSIG) is supported for both
zone transfers and zone notifications:

server:
 automatic-acl: on # Enabled automatic ACL

key:
 - id: xfr_notify_key # Common TSIG key for XFR an NOTIFY
 algorithm: hmac-sha256
 secret: VFRejzw8h4M7mb0xZKRFiZAfhhd1eDGybjqHr2FV3vc=

remote:
 - id: primary
 address: [2001:DB8:1::1, 192.168.1.1] # Primary server IP addresses
 # via: [2001:DB8:2::1, 10.0.0.1] # Local source addresses (optional)
 key: xfr_notify_key # TSIG key (optional)

zone:
 - domain: example.com
 master: primary # Primary remote(s)

An example of explicit ACL with different TSIG keys for zone transfers
and notifications:

key:
 - id: notify_key # TSIG key for NOTIFY
 algorithm: hmac-sha256
 secret: uBbhV4aeSS4fPd+wF2ZIn5pxOMF35xEtdq2ibi2hHEQ=

 - id: xfr_key # TSIG key for XFR
 algorithm: hmac-sha256
 secret: VFRejzw8h4M7mb0xZKRFiZAfhhd1eDGybjqHr2FV3vc=

remote:
 - id: primary
 address: [2001:DB8:1::1, 192.168.1.1] # Primary server IP addresses
 # via: [2001:DB8:2::1, 10.0.0.1] # Local source addresses if needed
 key: xfr_key # Optional TSIG key

acl:
 - id: notify_from_primary # ACL rule for NOTIFY from primary
 address: [2001:DB8:1::1, 192.168.1.1] # Primary addresses (optional)
 key: notify_key # TSIG key (optional)
 action: notify

zone:
 - domain: example.com
 master: primary # Primary remote(s)
 acl: notify_from_primary # Explicit ACL(s)

Note that the master option accepts a list of remotes, which are
queried for a zone refresh sequentially in the specified order. When the server
receives a zone change notification from a listed remote, only that remote is
used for a subsequent zone transfer.

Note

When transferring a lot of zones, the server may easily get into a state
where all available ports are in the TIME_WAIT state, thus transfers
cease until the operating system closes the ports for good. There are
several ways to work around this:

	Allow reusing of ports in TIME_WAIT (sysctl -w net.ipv4.tcp_tw_reuse=1)

	Shorten TIME_WAIT timeout (tcp_fin_timeout)

	Increase available local port count

Primary (master) zone

A zone is considered primary if it doesn't have master set. As
outgoing zone transfers (XFR) require authorization, it must be enabled
using automatic ACL or explicit ACL
configuration. Outgoing zone change notifications (NOTIFY) to remotes can be
set by configuring notify. Transaction authentication
(TSIG) is supported for both zone transfers and zone notifications:

server:
 automatic-acl: on # Enabled automatic ACL

key:
 - id: xfr_notify_key # Common TSIG key for XFR an NOTIFY
 algorithm: hmac-sha256
 secret: VFRejzw8h4M7mb0xZKRFiZAfhhd1eDGybjqHr2FV3vc=

remote:
 - id: secondary
 address: [2001:DB8:1::1, 192.168.1.1] # Secondary server IP addresses
 # via: [2001:DB8:2::1, 10.0.0.1] # Local source addresses (optional)
 key: xfr_notify_key # TSIG key (optional)

acl:
 - id: local_xfr # Allow XFR to localhost without TSIG
 address: [::1, 127.0.0.1]
 action: transfer

zone:
 - domain: example.com
 notify: secondary # Secondary remote(s)
 acl: local_xfr # Explicit ACL for local XFR

Note that the notify option accepts a list of remotes, which are
all notified sequentially in the specified order.

A secondary zone may serve as a primary zone for a different set of remotes
at the same time.

Dynamic updates

Dynamic updates for the zone are allowed via proper ACL rule with the
update action. If the zone is configured as a secondary and a DNS update
message is accepted, the server forwards the message to its first primary
master or ddns-master if configured.
The primary master's response is then forwarded back to the originator.

However, if the zone is configured as a primary, the update is accepted and
processed:

acl:
 - id: update_acl
 address: 192.168.3.0/24
 action: update

zone:
 - domain: example.com.
 acl: update_acl

Note

To forward DDNS requests signed with a locally unknown key, an ACL rule for
the action update without a key must be configured for the zone. E.g.:

acl:
 - id: fwd_foreign_key
 action: update
 # possible non-key options

zone:
 - domain: example.com.
 acl: fwd_foreign_key

Restricting dynamic updates

There are several additional ACL options for dynamic DNS updates which affect
the request classification based on the update contents.

Updates can be restricted to specific resource record types:

acl:
 - id: type_rule
 action: update
 update-type: [A, AAAA, MX] # Updated records must match one of the specified types

Another possibility is restriction on the owner name of updated records. The option
update-owner is used to select the source of domain
names which are used for the comparison. And the option update-owner-match
specifies the required relation between the record owner and the reference domain
names. Example:

acl:
 - id: owner_rule1
 action: update
 update-owner: name # Updated record owners are restricted by the next conditions
 update-owner-match: equal # The record owner must exactly match one name from the next list
 update-owner-name: [foo, bar.] # Reference domain names

Note

If the specified owner name is non-FQDN (e.g. foo), it's considered relatively
to the effective zone name. So it can apply to more zones
(e.g. foo.example.com. or foo.example.net.). Alternatively, if the
name is FQDN (e.g. bar.), the rule only applies to this name.

If the reference domain name is the zone name, the following variant can be used:

acl:
 - id: owner_rule2
 action: update
 update-owner: zone # The reference name is the zone name
 update-owner-match: sub # Any record owner matches except for the zone name itself

template:
 - id: default
 acl: owner_rule2

zone:
 - domain: example.com.
 - domain: example.net.

The last variant is for the cases where the reference domain name is a TSIG key name,
which must be used for the transaction security:

key:
 - id: example.com # Key names are always considered FQDN
 ...
 - id: steve.example.net
 ...
 - id: jane.example.net
 ...

acl:
 - id: owner_rule3_com
 action: update
 update-owner: key # The reference name is the TSIG key name
 update-owner-match: sub # The record owner must be a subdomain of the key name
 key: [example.com] # One common key for updating all non-apex records

 - id: owner_rule3_net
 action: update
 update-owner: key # The reference name is the TSIG key name
 update-owner-match: equal # The record owner must exactly match the used key name
 key: [steve.example.net, jane.example.net] # Keys for updating specific zone nodes

zone:
 - domain: example.com.
 acl: owner_rule3_com
 - domain: example.net.
 acl: owner_rule3_net

Handling CNAME and DNAME-related updates

In general, no RR must exist beside a CNAME or below a DNAME. Whenever
such a CNAME or DNAME-related semantic rule is vialoated by an RR addition
in DDNS (this means addition of a CNAME beside an existing record, addition of
another record beside a CNAME, addition of a DNAME above an existing record,
addition of another record below a DNAME), such an RR addition is silently ignored.
However, other RRs from the same DDNS update are processed normally. This is slightly
non-compliant with RFC 6672 (in particular, no RR occlusion takes place).

Automatic DNSSEC signing

Knot DNS supports automatic DNSSEC signing of zones. The signing
can operate in two modes:

	Automatic key management.
In this mode, the server maintains signing keys. New keys are generated
according to assigned policy and are rolled automatically in a safe manner.
No zone operator intervention is necessary.

	Manual key management.
In this mode, the server maintains zone signatures only. The signatures
are kept up-to-date and signing keys are rolled according to timing
parameters assigned to the keys. The keys must be generated and timing
parameters must be assigned by the zone operator.

The DNSSEC signing process maintains some metadata which is stored in the
KASP database. This database is backed
by LMDB.

Warning

Make sure to set the KASP database permissions correctly. For manual key
management, the database must be readable by the server process. For
automatic key management, it must be writeable. If no HSM is used,
the database also contains private key material – don't set the permissions
too weak.

Automatic ZSK management

For automatic ZSK management a signing policy has to
be configured and assigned to the zone. The policy specifies how the zone
is signed (i.e. signing algorithm, key size, key lifetime, signature lifetime,
etc.). If no policy is specified or the default one is assigned, the
default signing parameters are used.

A minimal zone configuration may look as follows:

zone:
 - domain: myzone.test
 dnssec-signing: on

With a custom signing policy, the policy section will be added:

policy:
 - id: custom_policy
 signing-threads: 4
 algorithm: ECDSAP256SHA256
 zsk-lifetime: 60d

zone:
 - domain: myzone.test
 dnssec-signing: on
 dnssec-policy: custom_policy

After configuring the server, reload the changes:

$ knotc reload

The server will generate initial signing keys and sign the zone properly. Check
the server logs to see whether everything went well.

Automatic KSK management

For automatic KSK management, first configure ZSK management like above, and use
additional options in policy section, mostly specifying
desired (finite) lifetime for KSK:

remote:
 - id: parent_zone_server
 address: 192.168.12.1@53

submission:
 - id: parent_zone_sbm
 parent: [parent_zone_server]

policy:
 - id: custom_policy
 signing-threads: 4
 algorithm: ECDSAP256SHA256
 zsk-lifetime: 60d
 ksk-lifetime: 365d
 ksk-submission: parent_zone_sbm

zone:
 - domain: myzone.test
 dnssec-signing: on
 dnssec-policy: custom_policy

After the initially-generated KSK reaches its lifetime, new KSK is published and after
convenience delay the submission is started. The server publishes CDS and CDNSKEY records
and the user shall propagate them to the parent. The server periodically checks for
DS at the parent zone and when positive, finishes the rollover.

Note

As the key timestamp semantics differ between the automatic and manual key
management, all key timestamps set in the future, either manually or during
a key import, are ignorred (cleared).

Manual key management

For automatic DNSSEC signing with manual key management, a signing policy
with manual key management flag has to be set:

policy:
 - id: manual
 manual: on

zone:
 - domain: myzone.test
 dnssec-signing: on
 dnssec-policy: manual

To generate signing keys, use the keymgr utility.
For example, we can use Single-Type Signing:

$ keymgr myzone.test. generate algorithm=ECDSAP256SHA256 ksk=yes zsk=yes

And reload the server. The zone will be signed.

To perform a manual rollover of a key, the timing parameters of the key need
to be set. Let's roll the key. Generate a new key, but do not activate
it yet:

$ keymgr myzone.test. generate algorithm=ECDSAP256SHA256 ksk=yes zsk=yes active=+1d

Take the key ID (or key tag) of the old key and disable it the same time
the new key gets activated:

$ keymgr myzone.test. set <old_key_id> retire=+2d remove=+3d

Reload the server again. The new key will be published (i.e. the DNSKEY record
will be added into the zone). Remember to update the DS record in the
parent zone to include a reference to the new key. This must happen within one
day (in this case) including a delay required to propagate the new DS to
caches.

Zone signing

The signing process consists of the following steps:

	Processing KASP database events. (e.g. performing a step of a rollover).

	Updating the DNSKEY records. The whole DNSKEY set in zone apex is replaced
by the keys from the KASP database. Note that keys added into the zone file
manually will be removed. To add an extra DNSKEY record into the set, the
key must be imported into the KASP database (possibly deactivated).

	Fixing the NSEC or NSEC3 chain.

	Removing expired signatures, invalid signatures, signatures expiring
in a short time, and signatures issued by an unknown key.

	Creating missing signatures. Unless the Single-Type Signing Scheme
is used, DNSKEY records in a zone apex are signed by KSK keys and
all other records are signed by ZSK keys.

	Updating and re-signing SOA record.

The signing is initiated on the following occasions:

	Start of the server

	Zone reload

	Reaching the signature refresh period

	Key set changed due to rollover event

	NSEC3 salt is changed

	Received DDNS update

	Forced zone re-sign via server control interface

On a forced zone re-sign, all signatures in the zone are dropped and recreated.

The knotc zone-status command can be used to see when the next scheduled
DNSSEC re-sign will happen.

On-secondary (on-slave) signing

It is possible to enable automatic DNSSEC zone signing even on a secondary
server. If enabled, the zone is signed after every AXFR/IXFR transfer
from primary, so that the secondary always serves a signed up-to-date version
of the zone.

It is strongly recommended to block any outside access to the primary
server, so that only the secondary server's signed version of the zone is served.

Enabled on-secondary signing introduces events when the secondary zone changes
while the primary zone remains unchanged, such as a key rollover or
refreshing of RRSIG records, which cause inequality of zone SOA serial
between primary and secondary. The secondary server handles this by saving the
primary's SOA serial in a special variable inside KASP DB and appropriately
modifying AXFR/IXFR queries/answers to keep the communication with
primary server consistent while applying the changes with a different serial.

Catalog zones

Catalog zones (RFC 9432 [https://datatracker.ietf.org/doc/html/rfc9432.html]) are a concept whereby a list of zones to be configured is maintained
as contents of a separate, special zone. This approach has the benefit of simple
propagation of a zone list to secondary servers, especially when the list is
frequently updated.

Terminology first. Catalog zone is a meta-zone which shall not be a part
of the DNS tree, but it contains information about the set of member zones and
is transferable to secondary servers using common AXFR/IXFR techniques.
A catalog-member zone (or just member zone) is a zone based on
information from the catalog zone and not from configuration file/database.
Member properties are some additional information related to each member zone,
also distributed with the catalog zone.

A catalog zone is handled almost in the same way as a regular zone:
It can be configured using all the standard options (but for example
DNSSEC signing is useless as the zone won't be queried by clients), including primary/secondary configuration
and ACLs. A catalog zone is indicated by setting the option
catalog-role. Standard DNS queries to a catalog zone are answered
with REFUSED as though the zone doesn't exist unless there is a matching ACL
rule for action transfer configured.
The name of the catalog zone is arbitrary. It's possible to configure
multiple catalog zones.

Warning

Don't choose a name for a catalog zone below a name of any other
existing zones configured on the server as it would effectively "shadow"
part of your DNS subtree.

Upon catalog zone (re)load or change, all the PTR records in the format
unique-id.zones.catalog. 0 IN PTR member.com. (but not too.deep.zones.catalog.!)
are processed and member zones created, with zone names taken from the
PTR records' RData, and zone settings taken from the configuration
templates specified by catalog-template.

The owner names of the PTR records shall follow this scheme:

<unique-id>.zones.<catalog-zone>.

where the mentioned labels shall match:

	<unique-id> — Single label that is recommended to be unique among member zones.

	zones — Required label.

	<catalog-zone> — Name of the catalog zone.

Additionally, records in the format
group.unique-id.zones.catalog. 0 IN TXT "conf-template"
are processed as a definition of the member's group property. The
unique-id must match the one of the PTR record defining the member.
It's required that at most one group is defined for each member. If multiple
groups are defined, one group is picked at random.

All other records and other member properties are ignored. They remain in the catalog
zone, however, and might be for example transferred to a secondary server,
which may interpret catalog zones differently. SOA still needs to be present in
the catalog zone and its serial handled appropriately. An apex NS record must be
present as for any other zone. The version record version 0 IN TXT "2"
is required at the catalog zone apex.

A catalog zone may be modified using any standard means (e.g. AXFR/IXFR, DDNS,
zone file reload). In the case of incremental change, only affected
member zones are reloaded.

The catalog zone must have at least one catalog-template
configured. The configuration for any defined member zone is taken from its
group property value, which should match some catalog-template name.
If the group property is not defined for a member, is empty, or doesn't match
any of defined catalog-template names, the first catalog-template
(in the order from configuration) is used. Nesting of catalog zones isn't
supported.

Any de-cataloged member zone is purged immediately, including its
zone file, journal, timers, and DNSSEC keys. The zone file is not
deleted if zonefile-sync is set to -1 for member zones.
Any member zone, whose PTR record's owner has been changed, is purged
immediately if and only if the <unique-id> has been changed.

When setting up catalog zones, it might be useful to set
catalog-db and catalog-db-max-size
to non-default values.

Note

Whenever a catalog zone is updated, the server reloads itself with
all configured zones, including possibly existing other catalog zones.
It's similar to calling knotc zone-reload (for all zones).
The consequence is that new zone files might be discovered and reloaded,
even for zones that do not relate to updated catalog zone.

Catalog zones never expire automatically, regardless of what is declared
in the catalog zone SOA. However, a catalog zone can be expired manually
at any time using knotc -f zone-purge +expire.

Currently, expiration of a catalog zone doesn't have any effect on its
member zones.

Warning

The server does not work well if one member zone appears in two catalog zones
concurrently. The user is encouraged to avoid this situation whatsoever.
Thus, there is no way a member zone can be migrated from one catalog
to another while preserving its metadata. Following steps may be used
as a workaround:

	Back up the member zone's metadata
(on each server separately).

	Remove the member zone from the catalog it's a member of.

	Wait for the catalog zone to be propagated to all servers.

	Add the member zone to the other catalog.

	Restore the backed up metadata (on each server separately).

Catalog zones configuration examples

Below are configuration snippets (e.g. server and log sections missing)
of very simple catalog zone setups, in order to illustrate the relations
between catalog-related configuration options.

First setup represents a very simple scenario where the primary is
the catalog zone generator and the secondary is the catalog zone consumer.

Primary configuration:

acl:
 - id: slave_xfr
 address: ...
 action: transfer

template:
 - id: mmemb
 catalog-role: member
 catalog-zone: catz.
 acl: slave_xfr

zone:
 - domain: catz.
 catalog-role: generate
 acl: slave_xfr

 - domain: foo.com.
 template: mmemb

 - domain: bar.com.
 template: mmemb

Secondary configuration:

acl:
 - id: master_notify
 address: ...
 action: notify

template:
 - id: smemb
 master: master
 acl: master_notify

zone:
 - domain: catz.
 master: master
 acl: master_notify
 catalog-role: interpret
 catalog-template: smemb

When new zones are added (or removed) to the primary configuration with assigned
mmemb template, they will automatically propagate to the secondary
and have the smemb template assigned there.

Second example is with a hand-written (or script-generated) catalog zone,
while employing configuration groups:

catz. 0 SOA invalid. invalid. 1625079950 3600 600 2147483646 0
catz. 0 NS invalid.
version.catz. 0 TXT "2"
nj2xg5bnmz2w4ltd.zones.catz. 0 PTR just-fun.com.
group.nj2xg5bnmz2w4ltd.zones.catz. 0 TXT unsigned
nvxxezjnmz2w4ltd.zones.catz. 0 PTR more-fun.com.
group.nvxxezjnmz2w4ltd.zones.catz. 0 TXT unsigned
nfwxa33sorqw45bo.zones.catz. 0 PTR important.com.
group.nfwxa33sorqw45bo.zones.catz. 0 TXT signed
mjqw42zomnxw2lq0.zones.catz. 0 PTR bank.com.
group.mjqw42zomnxw2lq0.zones.catz. 0 TXT signed

And the server in this case is configured to distinguish the groups by applying
different templates:

template:
 - id: unsigned
 ...

 - id: signed
 dnssec-signing: on
 dnssec-policy: ...
 ...

zone:
 - domain: catz.
 file: ...
 catalog-role: interpret
 catalog-template: [unsigned, signed]

DNS over QUIC

QUIC is a low-latency, encrypted, internet transport protocol.
Knot DNS supports DNS over QUIC (DoQ) (RFC 9250 [https://datatracker.ietf.org/doc/html/rfc9250.html]), including zone transfers (XoQ).
By default, the UDP port 853 is used for DNS over QUIC.

To use QUIC, a server private key and a certificate
must be available. If no key is configured, the server automatically generates one
with a self-signed temporary certificate. The key is stored in the KASP database
directory for persistence across restarts.

In order to listen for incoming requests over QUIC, at least one interface
or XDP interface must be configured.

An example of configuration of listening for DNS over QUIC on the loopback interface:

server:
 listen-quic: ::1

When the server is started, it logs some interface details and public key pin
of the used certificate:

... info: binding to QUIC interface ::1@853
... info: QUIC/TLS, certificate public key 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

Tip

The public key pin, which isn't secret, can also be displayed via:

$ knotc status cert-key
0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

Or from the keyfile via:

$ certtool --infile=quic_key.pem -k | grep pin-sha256
 pin-sha256:0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

Using kdig we can verify that the server responds over QUIC:

$ kdig @::1 ch txt version.server +quic
;; QUIC session (QUICv1)-(TLS1.3)-(ECDHE-X25519)-(EdDSA-Ed25519)-(AES-256-GCM)
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 0
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 1

;; EDNS PSEUDOSECTION:
;; Version: 0; flags: ; UDP size: 1232 B; ext-rcode: NOERROR
;; PADDING: 370 B

;; QUESTION SECTION:
;; version.server. CH TXT

;; ANSWER SECTION:
version.server. 0 CH TXT "Knot DNS 3.4.0"

;; Received 468 B
;; Time 2024-06-21 08:30:12 CEST
;; From ::1@853(QUIC) in 1.1 ms

In this case, opportunistic authentication [https://datatracker.ietf.org/doc/html/rfc9103.html#section-9.3.1] was
used, which doesn't guarantee that the client communicates with the genuine server
and vice versa. For strict authentication [https://datatracker.ietf.org/doc/html/rfc9103.html#section-9.3.2]
of the server, we can enforce certificate key pin check by specifying it
(enabled debug mode for details):

$ kdig @::1 ch txt version.server +tls-pin=0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw= +quic -d
;; DEBUG: Querying for owner(version.server.), class(3), type(16), server(::1), port(853), protocol(UDP)
;; DEBUG: TLS, received certificate hierarchy:
;; DEBUG: #1, CN=tester
;; DEBUG: SHA-256 PIN: 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=, MATCH
;; DEBUG: TLS, skipping certificate verification
;; QUIC session (QUICv1)-(TLS1.3)-(ECDHE-X25519)-(EdDSA-Ed25519)-(AES-256-GCM)
...

We see that a server certificate key matches the specified pin. Another possibility
is to use certificate chain validation if a suitable certificate is configured
on the server.

Zone transfers

For outgoing requests (e.g. NOTIFY and refresh), Knot DNS utilizes
session resumption [https://datatracker.ietf.org/doc/html/rfc9250.html#section-5.5.3], which speeds up QUIC connection
establishment.

Here are a few examples of zone transfer configurations using various
authentication mechanisms [https://datatracker.ietf.org/doc/html/rfc9103.html#section-9]:

Opportunistic authentication:

Primary and secondary can authenticate using TSIG. Fallback to clear-text DNS
isn't supported.

Primary:

server:
 listen-quic: ::1
 automatic-acl: on

key:
 - id: xfr_key
 algorithm: hmac-sha256
 secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
 - id: secondary
 address: ::2
 key: xfr_key # TSIG for secondary authentication
 quic: on

zone:
 - domain: example.com
 notify: secondary

Secondary:

server:
 listen-quic: ::2
 automatic-acl: on

key:
 - id: xfr_key
 algorithm: hmac-sha256
 secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
 - id: primary
 address: ::1
 key: xfr_key # TSIG for primary authentication
 quic: on

zone:
 - domain: example.com
 master: primary

Strict authentication:

Note that the automatic ACL doesn't work in this case due to asymmetrical
configuration. The secondary can authenticate using TSIG.

Primary:

server:
 listen-quic: ::1

key:
 - id: secondary_key
 algorithm: hmac-sha256
 secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
 - id: secondary
 address: ::2
 quic: on

acl:
 - id: secondary_xfr
 address: ::2
 key: secondary_key # TSIG for secondary authentication
 action: transfer

zone:
 - domain: example.com
 notify: secondary
 acl: secondary_xfr

Secondary:

server:
 listen-quic: ::2

key:
 - id: secondary_key
 algorithm: hmac-sha256
 secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
 - id: primary
 address: ::1
 key: secondary_key # TSIG for secondary authentication
 quic: on

acl:
 - id: primary_notify
 address: ::1
 cert-key: 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=
 action: notify

zone:
 - domain: example.com
 master: primary
 acl: primary_notify

Mutual authentication:

The mutual authentication [https://datatracker.ietf.org/doc/html/rfc9103.html#section-9.3.3] guarantees authentication
for both the primary and the secondary. In this case, TSIG would be redundant.
This mode is recommended if possible.

Primary:

server:
 listen-quic: ::1
 automatic-acl: on

remote:
 - id: secondary
 address: ::2
 quic: on
 cert-key: PXqv7/lXn6N7scg/KJWvfU/TEPe5BoIUHQGRLMPr6YQ=

zone:
 - domain: example.com
 notify: secondary

Secondary:

server:
 listen-quic: ::2
 automatic-acl: on

remote:
 - id: primary
 address: ::1
 quic: on
 cert-key: 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

zone:
 - domain: example.com
 master: primary

Note

Instead of certificate verification with specified authentication domain name,
Knot DNS uses certificate public key pinning. This approach has much lower
overhead and in most cases simplifies configuration and certificate management.

DNS over TLS

TLS is an encrypted internet transport protocol.
Knot DNS supports DNS over TLS (DoT) (RFC 7858 [https://datatracker.ietf.org/doc/html/rfc7858.html]), including zone transfers (XoT).
By default, the TCP port 853 is used for DNS over TLS.

There are the same requirements for TLS key and certificate as for DNS over QUIC.

In order to listen for incoming requests over TLS, interface
must be configured.

An example of configuration of listening for DNS over TLS on the loopback interface:

server:
 listen-tls: ::1

When the server is started, it logs some interface details and public key pin
of the used certificate:

... info: binding to TLS interface ::1@853
... info: QUIC/TLS, certificate public key 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

Using kdig we can verify that the server responds over TLS:

$ kdig @::1 ch txt version.server +tls
;; TLS session (TLS1.3)-(ECDHE-X25519)-(EdDSA-Ed25519)-(AES-256-GCM)
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 0
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 1

;; EDNS PSEUDOSECTION:
;; Version: 0; flags: ; UDP size: 1232 B; ext-rcode: NOERROR
;; PADDING: 370 B

;; QUESTION SECTION:
;; version.server. CH TXT

;; ANSWER SECTION:
version.server. 0 CH TXT "Knot DNS 3.4.0"

;; Received 468 B
;; Time 2024-06-21 08:31:13 CEST
;; From ::1@853(TLS) in 9.1 ms

Zone transfer configuration and authentication profiles are almost identical
to DNS over QUIC, with the only difference being the enabling of
tls for the corresponding remotes.

Query modules

Knot DNS supports configurable query modules that can alter the way
queries are processed. Each query requires a finite number of steps to
be resolved. We call this set of steps a query plan, an abstraction
that groups these steps into several stages.

	Before-query processing

	Answer, Authority, Additional records packet sections processing

	After-query processing

For example, processing an Internet-class query needs to find an
answer. Then based on the previous state, it may also append an
authority SOA or provide additional records. Each of these actions
represents a 'processing step'. Now, if a query module is loaded for a
zone, it is provided with an implicit query plan which can be extended
by the module or even changed altogether.

A module is active if its name, which includes the mod- prefix, is assigned
to the zone/template module option or to the default template
global-module option if activating for all queries.
If the module is configurable, a corresponding module section with
an identifier must be created and then referenced in the form of
module_name/module_id. See Modules for the list of available modules.

The same module can be specified multiple times, such as a global module and
a per-zone module, or with different configurations. However, not all modules
are intended for this, for example, mod-cookies! Global modules are executed
before per-zone modules.

Note

Query modules are processed in the order they are specified in the
zone/template configuration. In most cases, the recommended order is:

mod-synthrecord, mod-onlinesign, mod-cookies, mod-rrl, mod-dnstap, mod-stats

Performance Tuning

Numbers of Workers

There are three types of workers ready for parallel execution of performance-oriented tasks:
UDP workers, TCP workers, and Background workers. The first two types handle all network requests
via the UDP and TCP protocol (respectively) and do the response jobs for common
queries. Background workers process changes to the zone.

By default, Knot determines a well-fitting number of workers based on the number of CPU cores.
The user can specify the number of workers for each type with configuration/server section:
udp-workers, tcp-workers, background-workers.

An indication of when to increase the number of workers is when the server is lagging behind
expected performance, while CPU usage remains low. This is usually due to waiting for network
or I/O response during the operation. It may be caused by Knot design not fitting the use-case well.
The user should try increasing the number of workers (of the related type) slightly above 100 and if
the performance improves, decide a further, exact setting.

Number of available file descriptors

A name server configured for a large number of zones (hundreds or more) needs enough file descriptors
available for zone transfers and zone file updates, which default OS settings often don't provide.
It's necessary to check with the OS configuration and documentation and ensure the number of file
descriptors (sometimes called a number of concurrently open files) effective for the knotd process
is set suitably high. The number of concurrently open incoming TCP connections must be taken into
account too. In other words, the required setting is affected by the tcp-max-clients
setting.

Sysctl and NIC optimizations

There are several recommendations based on Knot developers' experience with their specific HW and SW
(mainstream Intel-based servers, Debian-based GNU/Linux distribution). They may improve or impact
performance in common use cases.

If your NIC driver allows it (see /proc/interrupts for hint), set CPU affinity (/proc/irq/$IRQ/smp_affinity)
manually so that each NIC channel is served by unique CPU core(s). You must turn off irqbalance service
in advance to avoid configuration override.

Configure sysctl as follows:

socket_bufsize=1048576
busy_latency=0
backlog=40000
optmem_max=20480

net.core.wmem_max = $socket_bufsize
net.core.wmem_default = $socket_bufsize
net.core.rmem_max = $socket_bufsize
net.core.rmem_default = $socket_bufsize
net.core.busy_read = $busy_latency
net.core.busy_poll = $busy_latency
net.core.netdev_max_backlog = $backlog
net.core.optmem_max = $optmem_max

Disable huge pages.

Configure your CPU to "performance" mode. This can be achieved depending on architecture, e.g. in BIOS,
or e.g. configuring /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor to "performance".

Tune your NIC device with ethtool:

ethtool -A $dev autoneg off rx off tx off
ethtool -K $dev tso off gro off ufo off
ethtool -G $dev rx 4096 tx 4096
ethtool -C $dev rx-usecs 75
ethtool -C $dev tx-usecs 75
ethtool -N $dev rx-flow-hash udp4 sdfn
ethtool -N $dev rx-flow-hash udp6 sdfn

On FreeBSD you can just:

ifconfig ${dev} -rxcsum -txcsum -lro -tso

Knot developers are open to hear about users' further suggestions about network devices tuning/optimization.

Operation

The Knot DNS server part knotd can run either in the foreground,
or in the background using the -d option. When run in the foreground, it
doesn't create a PID file. Other than that, there are no differences and you
can control both the same way.

The tool knotc is designed as a user front-end, making it easier
to control a running server daemon. If you want to control the daemon directly,
use SIGINT to quit the process or SIGHUP to reload the configuration.

If you pass neither configuration file (-c parameter) nor configuration
database (-C parameter), the server will first attempt to use the default
configuration database stored in /var/lib/knot/confdb or the
default configuration file stored in /etc/knot/knot.conf. Both the
default paths can be reconfigured with --with-storage=path or
--with-configdir=path respectively.

Example of server start as a daemon:

$ knotd -d -c knot.conf

Example of server shutdown:

$ knotc -c knot.conf stop

For a complete list of actions refer to the program help (-h parameter)
or to the corresponding manual page.

Also, the server needs to create rundir and storage
directories in order to run properly.

Note

Avoid editing of or other manipulation with configuration file during start
or reload of knotd or start of knotc
and other utilities which use it. There is a risk of
malfunction or a crash otherwise.

Configuration database

In the case of a huge configuration file, the configuration can be stored
in a binary database. Such a database can be simply initialized:

$ knotc conf-init

or preloaded from a file:

$ knotc conf-import input.conf

Also the configuration database can be exported into a textual file:

$ knotc conf-export output.conf

Warning

The import and export commands access the configuration database
directly, without any interaction with the server. Therefore, any data
not yet committed to the database won't be exported. And the server won't
reflect imported configuration correctly. So it is strictly recommended to
import new configuration when the server is not running.

Dynamic configuration

The configuration database can be accessed using the server control interface
while the server is running. To get the full power of the dynamic configuration,
the server must be started with a specified configuration database location
or with the default database initialized. Otherwise all the changes to the
configuration will be temporary (until the server is stopped).

Note

The database can be imported in advance.

Most of the commands get an item name and value parameters. The item name is
in the form of section[identifier].name. If the item is multivalued,
more values can be specified as individual (command line) arguments.

Caution

Beware of the possibility of pathname expansion by the shell. For this reason,
it is advisable to escape (with backslash) square brackets or to quote command parameters if
not executed in the interactive mode.

To get the list of configuration sections or to get the list of section items:

$ knotc conf-list
$ knotc conf-list 'server'

To get the whole configuration or to get the whole configuration section or
to get all section identifiers or to get a specific configuration item:

$ knotc conf-read
$ knotc conf-read 'remote'
$ knotc conf-read 'zone.domain'
$ knotc conf-read 'zone[example.com].master'

Warning

The following operations don't work on OpenBSD!

Modifying operations require an active configuration database transaction.
Just one transaction can be active at a time. Such a transaction then can
be aborted or committed. A semantic check is executed automatically before
every commit:

$ knotc conf-begin
$ knotc conf-abort
$ knotc conf-commit

To set a configuration item value or to add more values or to add a new
section identifier or to add a value to all identified sections:

$ knotc conf-set 'server.identity' 'Knot DNS'
$ knotc conf-set 'server.listen' '0.0.0.0@53' '::@53'
$ knotc conf-set 'zone[example.com]'
$ knotc conf-set 'zone.slave' 'slave2'

Note

Also the include operation can be performed. A non-absolute file
location is relative to the server binary path, not to the control binary
path!

$ knotc conf-set 'include' '/tmp/new_zones.conf'

To unset the whole configuration or to unset the whole configuration section
or to unset an identified section or to unset an item or to unset a specific
item value:

$ knotc conf-unset
$ knotc conf-unset 'zone'
$ knotc conf-unset 'zone[example.com]'
$ knotc conf-unset 'zone[example.com].master'
$ knotc conf-unset 'zone[example.com].master' 'remote2' 'remote5'

To get the change between the current configuration and the active transaction
for the whole configuration or for a specific section or for a specific
identified section or for a specific item:

$ knotc conf-diff
$ knotc conf-diff 'zone'
$ knotc conf-diff 'zone[example.com]'
$ knotc conf-diff 'zone[example.com].master'

Caution

While it is possible to change most of the configuration parameters
dynamically or via configuration file reload, a few of the parameters
in the section server require restarting the server, such that the changes
take effect. These parameters are:
rundir,
user,
pidfile,
tcp-reuseport,
udp-workers,
tcp-workers,
background-workers, and
listen.

An example of possible configuration initialization:

$ knotc conf-begin
$ knotc conf-set 'server.listen' '0.0.0.0@53' '::@53'
$ knotc conf-set 'remote[master_server]'
$ knotc conf-set 'remote[master_server].address' '192.168.1.1'
$ knotc conf-set 'template[default]'
$ knotc conf-set 'template[default].storage' '/var/lib/knot/zones/'
$ knotc conf-set 'template[default].master' 'master_server'
$ knotc conf-set 'zone[example.com]'
$ knotc conf-diff
$ knotc conf-commit

Secondary (slave) mode

Running the server as a secondary is very straightforward as the zone
is transfered automatically from a remote server. The received zone is
usually stored in a zone file after the zonefile-sync period
elapses. Zone differences are stored in the zone journal.

Primary (master) mode

If you just want to check the zone files before starting, you can use:

$ knotc zone-check example.com

Reading and editing zones

Knot DNS allows you to read or change zone contents online using the server
control interface.

Warning

Avoid concurrent zone access from a third party software when a zone event
(zone file load, refresh, DNSSEC signing, dynamic update) is in progress or
pending. In such a case, zone events must be frozen before. For more
information on how to freeze the zone read Reading and editing the zone file safely.

To get contents of all configured zones, or a specific zone contents, or zone
records with a specific owner, or even with a specific record type:

$ knotc zone-read --
$ knotc zone-read example.com
$ knotc zone-read example.com ns1
$ knotc zone-read example.com ns1 NS

Note

If the record owner is not a fully qualified domain name, then it is
considered as a relative name to the zone name.

To start a writing transaction on all zones or on specific zones:

$ knotc zone-begin --
$ knotc zone-begin example.com example.net

Now you can list all nodes within the transaction using the zone-get
command, which always returns current data with all changes included. The
command has the same syntax as zone-read.

Within the transaction, you can add a record to a specific zone or to all
zones with an open transaction:

$ knotc zone-set example.com ns1 3600 A 192.168.0.1
$ knotc zone-set -- ns1 3600 A 192.168.0.1

To remove all records with a specific owner, or a specific rrset, or
specific record data:

$ knotc zone-unset example.com ns1
$ knotc zone-unset example.com ns1 A
$ knotc zone-unset example.com ns1 A 192.168.0.2

To see the difference between the original zone and the current version:

$ knotc zone-diff example.com

Finally, either commit or abort your transaction:

$ knotc zone-commit example.com
$ knotc zone-abort example.com

A full example of setting up a completely new zone from scratch:

$ knotc conf-begin
$ knotc conf-set zone.domain example.com
$ knotc conf-commit
$ knotc zone-begin example.com
$ knotc zone-set example.com @ 3600 SOA ns admin 1 86400 900 691200 3600
$ knotc zone-set example.com @ 3600 NS ns
$ knotc zone-set example.com ns 3600 A 192.168.0.1
$ knotc zone-set example.com ns 3600 AAAA 2001:DB8::1
$ knotc zone-commit example.com

Note

If quotes are necessary for record data specification, remember to escape them:

$ knotc zone-set example.com @ 3600 TXT \"v=spf1 a:mail.example.com -all\"

Reading and editing the zone file safely

It's always possible to read and edit zone contents via zone file manipulation.
It may lead to confusion or even a program crash, however, if
the zone contents are continuously being changed by DDNS, DNSSEC signing and the like.
In such a case, the safe way to modify the zone file is to freeze zone events first:

$ knotc -b zone-freeze example.com.
$ knotc -b zone-flush example.com.

After calling freeze on the zone, there still may be running zone operations (e.g. signing),
causing freeze pending. Because of this, the blocking mode is used to ensure
the operation was finished. Then the zone can be flushed to a file.

Now the zone file can be safely modified (e.g. using a text editor).
If zonefile-load is not set to difference-no-serial, it's also necessary to
increase SOA serial in this step to keep consistency. Finally, we can load the
modified zone file and if successful, thaw the zone:

$ knotc -b zone-reload example.com.
$ knotc zone-thaw example.com.

Zone loading

The process of how the server loads a zone is influenced by the configuration of the
zonefile-load and journal-content
parameters (also DNSSEC signing applies), the existence of a zone file and journal
(and their relative out-of-dateness), and whether it is a cold start of the server
or a zone reload (e.g. invoked by the knotc interface). Please note
that zone transfers are not taken into account here – they are planned after the zone
is loaded (including zone bootstrap).

If the zone file exists and is not excluded by the configuration, it is first loaded
and according to its SOA serial number, relevant journal changesets are applied.
If this is a zone reload and we have zonefile-load set to difference, the difference
between old and new contents is computed and stored in the journal like an update.
The zone file should be either unchanged since last load or changed with incremented
SOA serial. In the case of a decreased SOA serial, the load is interrupted with
an error; if unchanged, it is increased by the server.

If the procedure described above succeeds without errors, the resulting zone contents are (after potential DNSSEC signing)
used as the new zone.

The option journal-content set to all lets the server, beside better performance, keep
track of the zone contents also across server restarts. It makes the cold start
effectively work like a zone reload with the old contents loaded from the journal
(unless this is the very first start with the zone not yet saved into the journal).

Journal behaviour

The zone journal keeps some history of changes made to the zone. It is useful for
responding to IXFR queries. Also if zone file flush is disabled, the
journal keeps the difference between the zone file and the current zone in case of server shutdown.
The history is stored in changesets – differences of zone contents between two
(usually subsequent) zone versions (specified by SOA serials).

Journals of all zones are stored in a common LMDB database. Huge changesets are
split into 15-70 KiB [1] blocks to prevent fragmentation of the DB. The
journal does each operation in one transaction to keep consistency of the DB and performance.

Each zone journal has its own occupation limits maximum usage
and maximum depth. Changesets are stored in the journal
one by one. When hitting any of the limits, the zone is flushed into the zone file
if there are no redundant changesets to delete, and the oldest changesets are deleted.
In the case of the size limit, twice [1] the needed amount of space is purged
to prevent overly frequent deletes.

If zone file flush is disabled, then instead of flushing
the zone, the journal tries to save space by merging the changesets into a special one.
This approach is effective if the changes rewrite each other, e.g. periodically
changing the same zone records, re-signing the whole zone etc. Thus the difference between the zone
file and the zone is still preserved even if the journal deletes some older changesets.

If the journal is used to store both zone history and contents, a special changeset
is present with zone contents. When the journal gets full, the changes are merged into this
special changeset.

There is also a safety hard limit for overall
journal database size, but it's strongly recommended to set the per-zone limits in
a way to prevent hitting this one. For LMDB, it's hard to recover from the
database-full state. For wiping one zone's journal, see knotc zone-purge +journal
command.

[1]
(1,2)
This constant is hardcoded.

Handling zone file, journal, changes, serials

Some configuration options regarding the zone file and journal, together with operation
procedures, might lead to unexpected results. This chapter points out
potential interference and both recommends and warns before some combinations thereof.
Unfortunately, there is no optimal combination of configuration options,
every approach has some disadvantages.

Example 1

Keep the zone file updated:

zonefile-sync: 0
zonefile-load: whole
journal-content: changes

These are default values. The user can always check the current zone
contents in the zone file, and also modify it (recommended with server turned-off or
taking the safe way). The journal serves here just as a source of
history for secondary servers' IXFR. Some users dislike that the server overwrites their
prettily prepared zone file.

Example 2

Zonefileless setup:

zonefile-sync: -1
zonefile-load: none
journal-content: all

Zone contents are stored only in the journal. The zone is updated by DDNS,
zone transfer, or via the control interface. The user might have filled the
zone contents initially from a zone file by setting zonefile-load to
whole temporarily.
It's also a good setup for secondary servers. Anyway, it's recommended to carefully tune
the journal-size-related options to avoid surprises like the journal getting full
(see Journal behaviour).

Example 3

Input-only zone file:

zonefile-sync: -1
zonefile-load: difference
journal-content: changes

The user can make changes to the zone by editing the zone file, and his pretty zone file
is never overwritten or filled with DNSSEC-related autogenerated records – they are
only stored in the journal.

Warning

The zone file's SOA serial must be properly set to a number which is higher than the
current SOA serial in the zone (not in the zone file) if manually updated!
This is important to ensure consistency of the journal and outgoing IXFR.

Note

This mode is not suitable if the zone can be modified externally (e.g. DDNS, knotc).

Example 4

Auto-increment SOA serial:

zonefile-sync: -1
zonefile-load: difference-no-serial
journal-content: all

This is similar to the previous setup, but the SOA serial is handled by the server
automatically. So the user no longer needs to care about it in the zone file.

However, this requires setting journal-content to all so that
the information about the last real SOA serial is preserved in case of server re-start.
The sizing of journal limits needs to be taken into consideration
(see Journal behaviour).

Note

This mode is not suitable if the zone can be modified externally (e.g. DDNS, knotc).

Zone bootstrapping on secondary

When zone refresh from the primary fails, the retry value from SOA is used
as the interval between refresh attempts. In a case that SOA isn't known to the
secondary (either because the zone hasn't been retrieved from the primary yet,
or the zone has expired), a backoff is used for repeated retry attempts.

With every retry, the delay rises as a quadratic polynomial (5 * n^2, where n
represents the sequence number of the retry attempt) up to two hours, each time
with a random delay of 0 to 30 seconds added to spread the load on the primary.
In each attempt, the retry interval is subject to retry-min-interval
and retry-max-interval.

Until the refresh has been successfully completed, the backoff is restarted from
the beginning by every zone-refresh or zone-retransfer of the zone
triggered manually via knotc, by zone-purge or
zone-restore of the zone's timers, or by a restart of knotd.

Zone expiration

On a primary, zone normally never expires. On a secondary, zone expiration results
in removal of the current zone contents and a trigger of immediate zone refresh.
The zone file and zone's journal are kept, but not used for answering requests
until the refresh is successfully completed.

The zone expire timer is set according to the zone's SOA expire field. In addition
to it, Knot DNS also supports EDNS EXPIRE extension of the expire timer in both
primary and secondary roles as described in RFC 7314 [https://datatracker.ietf.org/doc/html/rfc7314.html].

When Knot DNS is configured as a secondary, EDNS EXPIRE option present in a SOA,
IXFR, or AFXR response from the primary is processed and used to update the zone
timer when necessary. This functionality (together with requests of any other EDNS
options) for a specified primary may be disabled using the no-edns
configuration parameter.

If it's necessary, any zone may be expired manually using the zone-purge
command of the knotc utility. Manual expiration is applicable
to any zone, including a catalog zone or a zone on a primary. Beware, a manually
expired zone on a primary or a manually expired catalog zone becomes valid again
after a server configuration is reloaded or the knotd process
is restarted, provided that the zone data hasn't been removed.

DNSSEC key states

During its lifetime, a DNSSEC key finds itself in different states. Most of the time it
is used for signing the zone and published in the zone. In order to exchange
the key, one type of a key rollover is necessary, and during this rollover,
the key goes through various states with respect to the rollover type and also the
state of the other key being rolled-over.

First, let's list the states of the key being rolled-in.

Standard states:

	active — The key is used for signing.

	published — The key is published in the zone, but not used for signing. If the key is
a KSK or CSK, it is used for signing the DNSKEY RRSet.

	ready (only for KSK) — The key is published in the zone and used for signing. The
old key is still active, since we are waiting for the DS records in the parent zone to be
updated (i.e. "KSK submission").

Special states for algorithm rollover:

	pre-active — The key is not yet published in the zone, but it's used for signing the zone.

	published — The key is published in the zone, and it's still used for signing since the
pre-active state.

Second, we list the states of the key being rolled-out.

Standard states:

	retire-active — The key is still used for signing, and is published in the zone, waiting for
the updated DS records in parent zone to be acked by resolvers (KSK case) or synchronizing
with KSK during algorithm rollover (ZSK case).

	retired — The key is no longer used for signing. If ZSK, the key is still published in the zone.

	removed — The key is not used in any way (in most cases such keys are deleted immediately).

Special states for algorithm rollover:

	post-active — The key is no longer published in the zone, but still used for signing.

Special states for RFC 5011 [https://datatracker.ietf.org/doc/html/rfc5011.html] trust anchor roll-over

	revoke (only for KSK) — The key is published and used for signing, and the Revoked flag is set.

Note

Trust anchor roll-over is not implemented with automatic key management.

The revoke state can only be established using keymgr when using
Manual key management.

The states listed above are relevant for keymgr operations like generating
a key, setting its timers and listing KASP database.

Note that the key "states" displayed in the server log lines while zone signing
are not according to those listed above, but just a hint as to what the key is currently used for
(e.g. "public, active" = key is published in the zone and used for signing).

DNSSEC key rollovers

This section describes the process of DNSSEC key rollover and its implementation
in Knot DNS, and how the operator might watch and check that it's working correctly.
The prerequisite is automatic zone signing with enabled
automatic key management.

The KSK and ZSK rollovers are triggered by the respective zone key getting old according
to the settings (see KSK and ZSK lifetimes).

The algorithm rollover starts when the policy algorithm
field is updated to a different value.

The signing scheme rollover happens when the policy signing scheme
field is changed.

It's also possible to change the algorithm and signing scheme in one rollover.

The operator may check the next rollover phase time by watching the next zone signing time,
either in the log or via knotc zone-status. There is no special log for finishing a rollover.

Note

There are never two key rollovers running in parallel for one zone. If
a rollover is triggered while another is in progress, it waits until the
first one is finished. Note that a rollover might be considered finished
when the old key is retired or waiting to be deleted.

The ZSK rollover is performed with Pre-publish method, KSK rollover uses Double-Signature
scheme, as described in RFC 6781 [https://datatracker.ietf.org/doc/html/rfc6781.html].

Automatic KSK and ZSK rollovers example

Let's start with the following set of keys:

2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public, active

The last fields hint the key state: public denotes a key that will be presented
as the DNSKEY record, ready means that CDS/CDNSKEY records were created,
active tells us that the key is used for signing, while active+ is an
active key undergoing a roll-over or roll-in.

For demonstration purposes, the following configuration is used:

submission:
 - id: test_submission
 check-interval: 2s
 parent: dnssec_validating_resolver

policy:
 - id: test_policy
 ksk-lifetime: 5m
 zsk-lifetime: 2m
 propagation-delay: 2s
 dnskey-ttl: 10s
 zone-max-ttl: 15s
 ksk-submission: test_submission

Upon the zone's KSK lifetime expiration, a new KSK is generated and the rollover
continues along the lines of RFC 6781#section-4.1.2 [https://datatracker.ietf.org/doc/html/rfc6781.html#section-4.1.2]:

KSK Rollover (53594 -> 3375)

2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, KSK rollover started
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, next key action, KSK tag 3375, submit at 2024-02-14T15:20:12+0100
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active+
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111204, new RRSIGs 3
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:20:12+0100

... (propagation-delay + dnskey-ttl) ...

2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:12+0100 notice: [example.com.] DNSSEC, KSK submission, waiting for confirmation
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, ready, active+
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111205, new RRSIGs 6
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, next signing at 2024-02-28T15:19:37+0100

At this point the new KSK has to be submitted to the parent zone. Knot detects the updated parent's DS
record automatically (and waits for additional period of the DS's TTL before retiring the old key)
if parent DS check is configured, otherwise the
operator must confirm it manually (using knotc zone-ksk-submitted)

Note

A DS record for the new KSK can be generated using:

$ keymgr example.com ds 3375

2024-02-14T15:20:12+0100 info: [example.com.] DS check, outgoing, remote 127.0.0.1@5300 TCP, KSK submission check: negative
2024-02-14T15:20:14+0100 info: [example.com.] DS check, outgoing, remote 127.0.0.1@5300 TCP/pool, KSK submission check: negative
2024-02-14T15:20:16+0100 info: [example.com.] DS check, outgoing, remote 127.0.0.1@5300 TCP/pool, KSK submission check: positive
2024-02-14T15:20:16+0100 notice: [example.com.] DNSSEC, KSK submission, confirmed
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm ECDSAP256SHA256, KSK, public, active+
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111206, new RRSIGs 2
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:20:23+0100

... (parent's DS TTL is 7 seconds) ...

2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, next key action, ZSK, generate at 2024-02-14T15:21:54+0100
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111207, new RRSIGs 2
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:21:54+0100

Upon the zone's ZSK lifetime expiration, a new ZSK is generated and the rollover
continues along the lines of RFC 6781#section-4.1.1 [https://datatracker.ietf.org/doc/html/rfc6781.html#section-4.1.1]:

ZSK Rollover (36185 -> 38559)

2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, ZSK rollover started
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, next key action, ZSK tag 38559, replace at 2024-02-14T15:22:06+0100
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm ECDSAP256SHA256, public
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111208, new RRSIGs 2
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:22:06+0100

... (propagation-delay + dnskey-ttl) ...

2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, next key action, ZSK tag 36185, remove at 2024-02-14T15:22:23+0100
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm ECDSAP256SHA256, public
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111209, new RRSIGs 14
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:22:23+0100

... (propagation-delay + zone-max-ttl) ...

2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, next key action, ZSK, generate at 2024-02-14T15:24:06+0100
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111210, new RRSIGs 2
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:24:06+0100

Further rollovers:

... (zsk-lifetime - propagation-delay - zone-max-ttl) ...

Another ZSK Rollover (38559 -> 59825)

2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, ZSK rollover started
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, next key action, ZSK tag 59825, replace at 2024-02-14T15:24:18+0100
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, key, tag 59825, algorithm ECDSAP256SHA256, public
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111211, new RRSIGs 2
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:24:18+0100

...

Another KSK Rollover (3375 -> 50822)

2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, KSK rollover started
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, next key action, KSK tag 50822, submit at 2024-02-14T15:25:12+0100
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm ECDSAP256SHA256, KSK, public, active
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, key, tag 59825, algorithm ECDSAP256SHA256, public, active
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, key, tag 50822, algorithm ECDSAP256SHA256, KSK, public, active+
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, successfully signed, serial 2010111214, new RRSIGs 3
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, next signing at 2024-02-14T15:25:12+0100

...

Tip

If systemd is available, the KSK submission event is logged into journald
in a structured way. The intended use case is to trigger a user-created script.
Example:

journalctl -f -t knotd -o json | python3 -c '
import json, sys
for line in sys.stdin:
 k = json.loads(line);
 if "KEY_SUBMISSION" in k:
 print("%s, zone=%s, keytag=%s" % (k["__REALTIME_TIMESTAMP"], k["ZONE"], k["KEY_SUBMISSION"]))
'

Alternatively, the D-Bus signaling can be utilized for the same use.

DNSSEC shared KSK

Knot DNS allows, with automatic DNSSEC key management, to configure a shared KSK for multiple zones.
By enabling ksk-shared, we tell Knot to share all newly-created KSKs
among all the zones with the same DNSSEC signing policy assigned.

The feature works as follows. Each zone still manages its keys separately. If a new KSK shall be
generated for the zone, it first checks if it can grab another zone's shared KSK instead -
that is the last generated KSK in any of the zones with the same policy assigned.
Anyway, only the cryptographic material is shared, the key may have different timers
in each zone.

Consequences:

If we have an initial setting with brand new zones without any DNSSEC keys,
the initial keys for all zones are generated. With shared KSK, they will all have the same KSK,
but different ZSKs. The KSK rollovers may take place at slightly different times for each of the zones,
but the resulting new KSK will be shared again among all of them.

If we have zones which already have their keys, turning on the shared KSK feature triggers no action.
But when a KSK rollover takes place, they will use the same new key afterwards.

Warning

Changing the policy id must be done carefully if shared
KSK is in use.

DNSSEC delete algorithm

This is how to "disconnect" a signed zone from a DNSSEC-aware parent zone.
More precisely, we tell the parent zone to remove our zone's DS record by
publishing a special formatted CDNSKEY and CDS record. This is mostly useful
if we want to turn off DNSSEC on our zone so it becomes insecure, but not bogus.

With automatic DNSSEC signing and key management by Knot, this is as easy as
configuring cds-cdnskey-publish option and reloading the configuration.
We check if the special CDNSKEY and CDS records with the rdata "0 3 0 AA==" and "0 0 0 00",
respectively, appeared in the zone.

After the parent zone notices and reflects the change, we wait for TTL expire
(so all resolvers' caches get updated), and finally we may do anything with the
zone, e.g. turning off DNSSEC, removing all the keys and signatures as desired.

DNSSEC Offline KSK

Knot DNS allows a special mode of operation where the private part of the Key Signing Key is
not available to the daemon, but it is rather stored securely in an offline storage. This requires
that the KSK/ZSK signing scheme is used (i.e. single-type-signing is off).
The Zone Signing Key is always fully available to the daemon in order to sign common changes to the zone contents.

The server (or the "ZSK side") only uses ZSK to sign zone contents and its changes. Before
performing a ZSK rollover, the DNSKEY records will be pre-generated and signed by the
signer (the "KSK side"). Both sides exchange keys in the form of human-readable messages with the help
of the keymgr utility.

Prerequisites

For the ZSK side (i.e. the operator of the DNS server), the zone has to be configured with:

	Enabled DNSSEC signing

	Properly configured and assigned DNSSEC policy:

	Enabled manual

	Enabled offline-ksk

	Explicit dnskey-ttl

	Explicit zone-max-ttl

	Recommended keytag-modulo setting to 0/2 to prevent keytag conflicts

	Other options are optional

	KASP DB may contain a ZSK (the present or some previous one(s))

For the KSK side (i.e. the operator of the KSK signer), the zone has to be configured with:

	Properly configured and assigned DNSSEC policy:

	Enabled manual

	Enabled offline-ksk

	Explicit rrsig-refresh

	Recommended keytag-modulo setting to 1/2 to prevent keytag conflicts

	Optional rrsig-lifetime, rrsig-pre-refresh,
algorithm, reproducible-signing,
and cds-cdnskey-publish

	Other options are ignored

	KASP DB contains a KSK (the present or a newly generated one)

Generating and signing future ZSKs

	Use the keymgr pregenerate command on the ZSK side to prepare the ZSKs for a specified period of time in the future. The following example
generates ZSKs for the example.com zone for 6 months ahead starting from now:

$ keymgr -c /path/to/ZSK/side.conf example.com. pregenerate +6mo

If the time period is selected as e.g. 2 x zsk-lifetime + 4 x propagation-delay, it will
prepare roughly two complete future key rollovers. The newly-generated
ZSKs remain in non-published state until their rollover starts, i.e. the time
they would be generated in case of automatic key management.

	Use the keymgr generate-ksr command on the ZSK side to export the public parts of the future ZSKs in a form
similar to DNSKEY records. You might use the same time period as in the first step:

$ keymgr -c /path/to/ZSK/side.conf example.com. generate-ksr +0 +6mo > /path/to/ksr/file

Save the output of the command (called the Key Signing Request or KSR) to a file and transfer it to the KSK side e.g. via e-mail.

	Use the keymgr sign-ksr command on the KSK side with the KSR file from the previous step as a parameter:

$ keymgr -c /path/to/KSK/side.conf example.com. sign-ksr /path/to/ksr/file > /path/to/skr/file

This creates all the future forms of the DNSKEY, CDNSKEY and CSK records and all the respective RRSIGs and prints them on output. Save
the output of the command (called the Signed Key Response or SKR) to a file and transfer it back to the ZSK side.

	Use the keymgr import-skr command to import the records and signatures from the SKR file generated in the last step
into the KASP DB on the ZSK side:

$ keymgr -c /path/to/ZSK/side.conf example.com. import-skr /path/to/skr/file

	Use the knotc zone-keys-load command to trigger a zone re-sign on the ZSK-side and set up the future re-signing events correctly.:

$ knotc -c /path/to/ZSK/side.conf zone-keys-load example.com.

	Now the future ZSKs and DNSKEY records with signatures are ready in KASP DB for later usage.
Knot automatically uses them at the correct time intervals.
The entire procedure must be repeated before the time period selected at the beginning passes,
or whenever a configuration is changed significantly. Importing new SKR over some previously-imported
one leads to deleting the old offline records.

Offline KSK and manual ZSK management

If the automatically preplanned ZSK roll-overs (first step) are not desired, just set the zsk-lifetime
to zero, and manually pregenerate ZSK keys and set their timers. Then follow the steps
generate-ksr — sign-ksr — import-skr — zone-keys-load and repeat the ceremony when necessary.

Offline KSK roll-over

The KSKs (on the KSK side) must be managed manually, but manual KSK roll-over is possible. Just plan the steps
of the KSK roll-over in advance, and whenever the KSK set or timers are changed, re-perform the relevant rest of the ceremony
sign-ksr — import-skr — zone-keys-load.

Emergency SKR

A general recommendation for large deployments is to have some backup pre-published keys, so that if the current ones are
compromised, they can be rolled-over to the backup ones without any delay. But in the case of Offline KSK, according to
the procedures above, both ZSK and KSK immediate rollovers require the KSR-SKR ceremony.

However, a trick can be done to achieve really immediate key substitution. This is no longer about Knot DNS functionality,
just a hint for the operator.

The idea is to perform every KSR-SKR ceremony twice: once with normal state of the keys (the backup key is only published),
and once with the keys already exchanged (the backup key is temporarily marked as active and the standard key temporarily
as public only). The second (backup) SKR should be saved for emergency key replacement.

Summary of the steps:

	Prepare KSK and ZSK side as usual, including public-only emergency key

	Perform normal Offline KSK ceremony:

	Pre-generate ZSKs (only in the case of automatic ZSK management)

	Generate KSR

	Sign KSR on the KSK side

	Import SKR

	Re-sign the zone

	Freeze the zone on the ZSK side

	Temporarily set the backup key as active and the normal key as publish-only

	Perform backup Offline KSK ceremony:

	Generate KSR (only if the backup key is a replacement for ZSK)

	Sign the KSR on the KSK side

	Save the SKR to a backup storage, don't import it yet

	Return the keys to the previous state

	Thaw the zone on the ZSK side

Emergency key replacement:

	Import the backup SKR

	Align the keys with the new states (backup key as active, compromised key as public)

	Re-sign the zone

DNSSEC multi-signer

Multi-signer is a general term that refers to any mode of operation in which
a DNS zone is signed by multiple servers (usually two) in parallel.
Knot DNS offers various multi-signer modes, which are recommended for redundancy
within an organization. For multi-signer operations involving multiple
"DNSSEC providers" and the ability to switch between them, you can also refer to
MUSIC [https://github.com/DNSSEC-Provisioning/music].

Regardless of the chosen mode from the following options, any secondary that has multiple signers
configured as primaries must prevent interchanged IXFR from them. This can be achieved
either by setting master pinning on every secondary or
by setting distinct serial-modulo on each signer. It is recommended to combine
both approaches. Alternatively, if any of the secondaries is not Knot DNS,
provide-ixfr can be disabled on the signers.

In order to prevent keytag conflicts, it is recommended that the keytags of keys
generated by each signer are from distinct subset of possible values. With Knot DNS, this
can be achieved using keytag-modulo option (e.g. for three signers, setting
0/3 on the first one, 1/3 on the second, and 2/3 on the third of them).

Sharing private keys, manual policy

When DNSSEC keys are shared among zone signing servers (signers), one challenge
is automatic key management (roll-overs) and synchronization among the signers.
In this example mode of operation, it is expected that key management is maintained
outside of Knot, and the generated keys, including private keys and metadata
(timers), are available in Bind9 format.

Every new key is then imported into each Knot using the keymgr
import-bind command, after which knotc zone-keys-load
is invoked. With manual policy configured, the signers simply
follow prescribed key timers, maintaining the same key set at each signer.
For more useful commands like list, set, and delete, refer
to keymgr.

Sharing private keys, automatic policy

Knot handles automatic key management very well, but enabling it on multiple
instances would lead to redundant key generation. However, it's possible to enable it on one signer
and keep synchronizing the keys to all others. The managing signer shall be configured with
automatic ZSK/KSK management, all others
with manual policy.

The key set changes on the managing signer can be monitored by periodic queries
with keymgr list, or by listening to
D-Bus interface and watching for the keys_updated event.

Whenever the key set is changed, key synchronization can be safely performed with
Data and metadata backup feature. Dump the KASP
database on the managing signer with knotc zone-backup +kaspdb,
transfer the backup directory to each other signer, and import the keys by
knotc zone-restore +kaspdb, followed by zone-keys-load
on them.

This way, the full key set, including private keys and all metadata, is always
synchronized between signers. The method of transporting the backup directory
is beyond the scope of Knot and this documentation. An eventual loss of the managing
signer results in the automatic key management being halted, but DNSSEC signing continues
to function. The synchronization delay for keys between the managing signer and other
signers must be accounted for in propagation-delay.

Distinct keys, DNSKEY record synchronization

When the DNSSEC keys are not shared among signers, each server can manage its own keys separately.
However, the DNSKEY (including CDNSKEY and CDS) records (with public keys) must be synchronized
for full validity of the signed zone. Dynamic updates can be used to achieve this sharing.

The following configuration options should be used:

	Set dnskey-management to incremental on each signer to ensure
it retains the other's DNSKEY records in the zone during signing.

	Set delete-delay to a reasonable time interval, which ensures that
all signers get synchronized during this period.

	Set cds-cdnskey-publish to either none or always, otherwise
the parent DS record might configure itself to point only to one signer's KSK.

	Configure dnskey-sync to all other signers so that this signer's
public keys appear in each other's DNSKEY (also applies to CDNSKEY and CDS) RRSets.

	Configure Access control list (ACL) so that DDNS from all other signers is allowed.

	Set ddns-master to empty value ("") so that DDNS from other signers
is not forwarded to the primary master if any.

	Additionally, the synchronization delay between all signers must be accounted
for in propagation-delay.

With careful configuration, all signers automatically synchronize their DNSKEY (and eventually
CDNSKEY and CDS) RRSets, keeping them synchronized during roll-overs. Nevertheless,
it is recommended to monitor their logs.

Note

It is highly recommended to use this mode with only two signers. With three or more signers,
it often happens that they continuously overwrite each other's DNSKEYs for a long time before
settling down. This can be mitigated by configuring dnskey-sync in a cyclic maner,
such that they form a cycle (i.e. signer1 synchronizes only to signer2, signer2 to signer3 and so on).
However, this in turn leads to a breakage in DNSKEY synchronization whenever any signer goes offline.
A practical compromise is carefully configuring the order of each signer's dnskey-sync
values in the way that the "cycling" signer is at the first position and the remaining signers follow.

An illustrative example of the second of three signers:

remote:
 - id: signer1
 address: 10.20.30.1
 - id: signer3
 address: 10.20.30.3

 acl:
 - id: signers
 remote: [signer1, signer3]
 action: [query, update]
 # TODO configure TSIGs!

dnskey-sync:
 - id: sync
 remote: [signer3, signer1] # the order matters here!

policy:
 - id: multisigner
 single-type-signing: on
 ksk-lifetime: 60d
 ksk-submission: ... # TODO see Automatic KSK management
 propagation-delay: 14h
 delete-delay: 2h
 cds-cdnskey-publish: always
 dnskey-management: incremental
 dnskey-sync: sync

zone:
 - domain: example.com.
 # TODO configure zonefile and journal
 # TODO configure transfers in/out: master, NOTIFY, ACLs...
 dnssec-signing: on
 dnssec-policy: multisigner
 ddns-master: ""
 serial-modulo: 1/3
 acl: signers

Distinct keys, DNSKEY at common unsigned primary

The same approach and configuration can be used, with the difference that the signers
do not send updated DNSKEYs (along with CDNSKEYs and CDSs) to each other. Instead, they
send the updates to their common primary, which holds the unsigned version of zone.
The only configuration change involves redirecting
dnskey-sync to the common primary and adjusting its ACL to allow DDNS
from the signers.

It is also necessary to configure ixfr-benevolent on each signer so that
they accept incremental zone transfers from the primary with additions (or removals)
of their own's DNSKEYs.

This setup should work nicely with any number of signers, however, due to the size
of DNSKEY RRSet, at most three are advisable.

DNSSEC keys import to HSM

Knot DNS stores DNSSEC keys in textual PEM format (RFC 7468 [https://datatracker.ietf.org/doc/html/rfc7468.html]),
while many HSM management software require the keys for import to be in binary
DER format (Rec. ITU-T X.690 [https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=x.690]).
Keys can be converted from one format to another by software tools such as
certtool from GnuTLS [https://www.gnutls.org/] suite or
openssl from OpenSSL [https://www.openssl.org/] suite.

In the examples below, c4eae5dea3ee8c15395680085c515f2ad41941b6 is used as the key ID,
c4eae5dea3ee8c15395680085c515f2ad41941b6.pem represents the filename of the key in PEM format
as copied from the Knot DNS zone's KASP database directory,
c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der represents the file containing the private
key in DER format as generated by the conversion tool, and
c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der represents the file containing the public
key in DER format as generated by the conversion tool.

$ certtool -V -k --outder --infile c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
 --outfile c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der

$ certtool -V --pubkey-info --outder --load-privkey c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
 --outfile c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der

As an alternative, openssl can be used instead. It is necessary to specify either rsa or ec
command according to the algorithm used by the key.

$ openssl rsa -outform DER -in c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
 -out c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der

$ openssl rsa -outform DER -in c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
 -out c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der -pubout

Actual import of keys (both public and private keys from the same key pair) to an HSM can be done
via PKCS #11 interface, by pkcs11-tool from OpenSC [https://github.com/OpenSC/OpenSC/wiki] toolkit
for example. In the example below, /usr/local/lib/pkcs11.so is used as a name of the PKCS #11 library
or module used for communication with the HSM.

$ pkcs11-tool --module /usr/local/lib/pkcs11.so --login \
 --write-object c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der --type privkey \
 --usage-sign --id c4eae5dea3ee8c15395680085c515f2ad41941b6

$ pkcs11-tool --module /usr/local/lib/pkcs11.so -login \
 --write-object c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der --type pubkey \
 --usage-sign --id c4eae5dea3ee8c15395680085c515f2ad41941b6

Daemon controls

Knot DNS was designed to allow server reconfiguration on-the-fly
without interrupting its operation. Thus it is possible to change
both configuration and zone files and also add or remove zones without
restarting the server. This can be done with:

$ knotc reload

If you want to refresh the secondary zones, you can do this with:

$ knotc zone-refresh

Logging

Knot DNS supports logging to syslog or systemd-journald
facility, to a specified file, to standard output, or to standard error output.
Several different logging targets may be used in parallel.

If syslog or systemd-journald is used for logging, log rotation is handled
by that logging facility. When logging to a specified file, log rotation should
be done by moving the current log file followed by reopening of the log file with
either knotc -b reload or by sending SIGHUP to the knotd process (see the
pidfile).

Data and metadata backup

Some of the zone-related data, such as zone contents or DNSSEC signing keys,
and metadata, like zone timers, might be worth backing up. For the sake of
consistency, it's usually necessary to shut down the server, or at least freeze all
the zones, before copying the data like zone files, KASP database, etc, to
a backup location. To avoid this necessity, Knot DNS provides a feature to
back up some or all of the zones seamlessly.

Online backup

While the server is running and the zones normally loaded (even when they are
constantly/frequently being updated), the user can manually trigger the
backup by calling:

$ knotc zone-backup +backupdir /path/of/backup

To back up just some of the zones (instead of all), the user might provide
their list:

$ knotc zone-backup +backupdir /path/to/backup zone1.com. zone2.com. ...

The backup directory should be empty or non-existing and it must be accessible
and writable for the user account under which knotd is running.
The backup procedure will begin soon and will happen zone-by-zone
(partially in parallel if more background-workers are configured).
The user shall check the logs for the outcome of each zone's backup attempt.
The knotc's -b parameter might be used if the user desires to wait until
the backup work is done and a simple result status is printed out.

Tip

There is a plain ASCII text file in the backup directory,
knot_backup.label, that contains some useful information about the
backup, such as the backup creation date & time, the server identity, etc.
Care must always be taken not to remove this file from the backup nor to
damage it.

If a backup fails, the backup directory containing incomplete backup is retained.
For repeated backup attempts to the same directory, it must be removed or renamed
manually first.

Note

When backing up or restoring a catalog zone, it's necessary to make sure that
the contents of the catalog doesn't change during the backup or restore.
An easy solution is to use knotc zone-freeze on the catalog zone for the
time of backup and restore.

Offline restore

If the Online backup was performed for all zones, it's possible to
restore the backed up data by simply copying them to their normal locations,
since they're simply copies. For example, the user can copy (overwrite)
the backed up KASP database files to their configured location.

This restore of course must be done when the server is stopped. After starting up
the server, it should run in the same state as at the time of backup.

This method is recommended in the case of complete data loss, for example
physical server failure.

Note

The online backup procedure stores all zone files in a single directory
using their default file names. If the original directory layout was
different, then the required directory structure must be created manually
for offline restore and zone files must be placed individually to their
respective directories. If the zone file names don't follow the default
pattern, they must be renamed manually to match the configuration. These
limitations don't apply to the online restore procedure.

Online restore

This procedure is symmetrical to Online backup. By calling:

$ knotc zone-restore +backupdir /path/of/backup

the user triggers a one-by-one zone restore from the backup on a running
server. Again, a subset of zones might be specified. It must be specified
if the backup was created for only a subset of zones.

Note

For restore of backups that have been created by Knot DNS releases prior
to 3.1, it's necessary to use the -f option. Since this option also
turns off some verification checks, it shouldn't be used in other cases.

Note

For QUIC/TLS, only the auto-generated key is restored. The zone-restore
command doesn't restore a user-defined QUIC/TLS key and certificate so as to
avoid possible configuration management conflicts and they must be restored
from the backup (its subdirectory quic) manually. In all cases,
restart of the Knot server after the restore is necessary for the restored
QUIC/TLS key/certificate to take effect.

Limitations

Neither configuration file nor Configuration database is backed up
by zone backup. The configuration has to be synchronized before zone restore
is performed!

If the private keys are stored in a HSM (anything using a PKCS#11 interface),
they are not backed up. This includes internal metadata of the PKCS#11 provider
software, such as key mappings, authentication information, and the configuration
of the provider. Details are vendor-specific.

The restore procedure does not care for keys deleted after taking the snapshot.
Thus, after restore, there might remain some redundant .pem files
of obsolete signing keys.

Tip

In order to seamlessly deploy a restored backup of KASP DB with respect to
a possibly ongoing DNSSEC key rollover, it's recommended to set
propagation-delay to the sum of:

	The maximum delay between beginning of the zone signing and publishing
re-signed zone on all public secondary servers.

	How long it takes for the backup server to start up with the restored data.

	The period between taking backup snapshots of the live environment.

Statistics

The server provides some general statistics and optional query module statistics
(see mod-stats).

Server statistics or global module statistics can be shown by:

$ knotc stats
$ knotc stats server # Show all server counters
$ knotc stats mod-stats # Show all mod-stats counters
$ knotc stats server.zone-count # Show specific server counter

Per zone statistics can be shown by:

$ knotc zone-stats example.com. # Show all zone counters
$ knotc zone-stats example.com. mod-stats # Show all zone mod-stats counters
$ knotc zone-stats example.com. mod-stats.query-type # Show specific zone counter
$ knotc zone-stats -- # Show all zone counters for all zones
$ knotc zone-stats -- mod-stats.request-protocol # Show specific zone counter for all zones

To show all supported counters even with 0 value, use the force option.

A simple periodic statistic dump to a YAML file can also be enabled. See
statistics section for the configuration details.

As the statistics data can be accessed over the server control socket,
it is possible to create an arbitrary script (Python is supported at the moment)
which could, for example, publish the data in JSON format via HTTP(S)
or upload the data to a more efficient time series database. Take a look into
the python folder of the project for these scripts.

Mode XDP

Thanks to recent Linux kernel capabilities, namely eXpress Data Path and AF_XDP
address family, Knot DNS offers a high-performance DNS over UDP packet processing
mode. The basic idea is to filter DNS messages close to the network device and
effectively forward them to the nameserver without touching the network stack
of the operating system. Other messages (including DNS over TCP) are processed
as usual.

If listen is configured, the server creates
additional XDP workers, listening on specified interface(s) and port(s) for DNS
over UDP queries. Each XDP worker handles one RX and TX network queue pair.

Pre-requisites

	Linux kernel 4.18+ (5.x+ is recommended for optimal performance) compiled with
the CONFIG_XDP_SOCKETS=y option. The XDP mode isn't supported in other operating systems.

	A multiqueue network card, which offers enough Combined RX/TX channels, with
native XDP support is highly recommended. Successfully tested cards:

	NVIDIA (Mellanox) ConnectX-6 Dx (driver mlx5_core), maximum number of channels
per interface is 63. Official drivers are recommended.

	Intel series 700 (driver i40e), maximum number of channels per interface is 64.
Linux kernel drivers are recommended.

Cards with known instability issues:

	Intel series E810 (driver ice).

	Intel series 500 (driver ixgbe).

	If the knotd service is not directly executed in the privileged mode, some
additional Linux capabilities have to be set:

Execute command:

systemctl edit knot

And insert these lines:

[Service]
CapabilityBoundingSet=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_RESOURCE
AmbientCapabilities=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_RESOURCE

The CAP_SYS_RESOURCE is needed on Linux < 5.11.

All the capabilities are dropped upon the service is started.

	For proper processing of VLAN traffic, VLAN offloading should be disabled. E.g.:

ethtool -K <interface> tx-vlan-offload off rx-vlan-offload off

Optimizations

Some helpful commands:

ethtool -N <interface> rx-flow-hash udp4 sdfn
ethtool -N <interface> rx-flow-hash udp6 sdfn
ethtool -L <interface> combined <?>
ethtool -G <interface> rx <?> tx <?>
renice -n 19 -p $(pgrep '^ksoftirqd/[0-9]*$')

Limitations

	Request and its response must go through the same physical network device.

	Dynamic DNS over XDP is not supported.

	MTU higher than 1790 bytes is not supported.

	Multiple BPF filters per one network device are not supported.

	Systems with big-endian byte ordering require special recompilation of the nameserver.

	IPv4 header and UDP checksums are not verified on received DNS messages.

	DNS over XDP traffic is not visible to common system tools (e.g. firewall, tcpdump etc.).

	BPF filter is not automatically unloaded from the network device. Manual filter unload:

ip link set dev <interface> xdp off

Troubleshooting

First of all, check the logs. Enabling at least the warning message
severity may help you to identify some problems. See the log section
for details.

Reporting bugs

If you are unable to solve the problem by yourself, you can submit a
bugreport to the Knot DNS developers. For security or sensitive issues
contact the developers directly on
knot-dns@labs.nic.cz.
All other bugs and questions may be directed to the public Knot DNS users
mailing list
(knot-dns-users@lists.nic.cz) or
may be entered into the
issue tracking system [https://gitlab.nic.cz/knot/knot-dns/issues].

Before anything else, please try to answer the following questions:

	Has it been working?

	What has changed? System configuration, software updates, network
configuration, firewall rules modification, hardware replacement, etc.

The bugreport should contain the answers for the previous questions and in
addition at least the following information:

	Knot DNS version and type of installation (distribution package, from source,
etc.)

	Operating system, platform, kernel version

	Relevant basic hardware information (processor, amount of memory, available
network devices, etc.)

	Description of the bug

	Log output with the highest verbosity (category any, severity debug)

	Steps to reproduce the bug (if known)

	Backtrace (if the bug caused a crash or a hang; see the next section)

If possible, please provide a minimal configuration file and zone files which
can be used to reproduce the bug.

Generating backtrace

Backtrace carries basic information about the state of the program and how
the program got where it is. It helps determining the location of the bug in
the source code.

If you run Knot DNS from distribution packages, make sure the debugging
symbols for the package are installed. The symbols are usually distributed
in a separate package.

There are several ways to get the backtrace. One possible way is to extract
the backtrace from a core dump file. Core dump is a memory snapshot generated
by the operating system when a process crashes. The generating of core dumps
must be usually enabled:

$ ulimit -c unlimited # Enable unlimited core dump size
$ knotd ... # Reproduce the crash
...
$ gdb knotd <core-dump-file> # Start gdb on the core dump
(gdb) info threads # Get a summary of all threads
(gdb) thread apply all bt full # Extract backtrace from all threads
(gdb) quit

To save the backtrace into a file, the following GDB commands can be used:

(gdb) set pagination off
(gdb) set logging file backtrace.txt
(gdb) set logging on
(gdb) info threads
(gdb) thread apply all bt full
(gdb) set logging off

To generate a core dump of a running process, the gcore utility can be used:

$ gcore -o <output-file> $(pidof knotd)

Please note that core dumps can be intercepted by an error-collecting system
service (systemd-coredump, ABRT, Apport, etc.). If you are using such a service,
consult its documentation about core dump retrieval.

If the error is reproducible, it is also possible to start and inspect the
server directly in the debugger:

$ gdb --args knotd -c /etc/knot.conf
(gdb) run
...

Alternatively, the debugger can be attached to a running server
process. This is generally useful when troubleshooting a stuck process:

$ knotd ...
$ gdb --pid $(pidof knotd)
(gdb) continue
...

If you fail to get a backtrace of a running process using the previous method,
you may try the single-purpose pstack utility:

$ pstack $(pidof knotd) > backtrace.txt

Crash caused by a Bus error

Zone files and a configuration file are usually accessed as
mmaped [https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html]
files. If such files are changed or truncated at the same time when those files
are being loaded/reloaded by the program, it may result in Bus error
(SIGBUS) [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html]
and a program crash. If you encounter a Bus error, first check that there isn't
a concurrent write access from an external program to the respective files.

Configuration Reference

Description

Configuration files for Knot DNS use simplified YAML format. Simplified means
that not all of the features are supported.

For the description of configuration items, we have to declare a meaning of
the following symbols:

	INT – Integer

	STR – Textual string

	HEXSTR – Hexadecimal string (with 0x prefix)

	BOOL – Boolean value (on/off or true/false)

	TIME – Number of seconds, an integer with a possible time multiplier suffix
(s ~ 1, m ~ 60, h ~ 3600, d ~ 24 * 3600, w ~ 7 * 24 * 3600,
M ~ 30 * 24 * 3600, y ~ 365 * 24 * 3600)

	SIZE – Number of bytes, an integer with a possible size multiplier suffix
(B ~ 1, K ~ 1024, M ~ 1024^2 or G ~ 1024^3)

	BASE64 – Base64 encoded string

	ADDR – IPv4 or IPv6 address

	DNAME – Domain name

	... – Multi-valued item, order of the values is preserved

	[] – Optional value

	| – Choice

The configuration consists of several fixed sections and optional module
sections. There are 17 fixed sections (module, server, xdp, control,
log, statistics, database, keystore, key, remote,
remotes, acl, submission, dnskey-sync, policy, template,
zone).
Module sections are prefixed with the mod- prefix (e.g. mod-stats).

Most of the sections (e.g. zone) are sequences of settings blocks. Each
settings block begins with a unique identifier, which can be used as a reference
from other sections (such an identifier must be defined in advance).

A multi-valued item can be specified either as a YAML sequence:

address: [10.0.0.1, 10.0.0.2]

or as more single-valued items each on an extra line:

address: 10.0.0.1
address: 10.0.0.2

If an item value contains spaces or other special characters, it is necessary
to enclose such a value within double quotes " ".

If not specified otherwise, an item representing a file or a directory path may
be defined either as an absolute path (starting with /), or a path relative
to the same directory as the default value of the item.

Comments

A comment begins with a # character and is ignored during processing.
Also each configuration section or sequence block allows a permanent
comment using the comment item which is stored in the server beside the
configuration.

Including configuration

Another configuration file or files, matching a pattern, can be included at
the top level in the current file.

include: STR

include

A path or a matching pattern specifying one or more files that are included
at the place of the include option position in the configuration.
If the path is not absolute, then it is considered to be relative to the
current file. The pattern can be an arbitrary string meeting POSIX glob
requirements, e.g. dir/*.conf. Matching files are processed in sorted order.

Default: not set

Clearing configuration sections

It's possible to clear specified configuration sections at given phases
of the configuration parsing.

clear: STR

clear

A matching pattern specifying configuration sections that are cleared when
this item is parsed. This allows overriding of existing configuration
in the configuration database when including a configuration file or
ensures that some configuration wasn't specified in previous includes.

Note

For the pattern matching the POSIX function
fnmatch() [https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html]
is used. On Linux, the GNU extension
FNM_EXTMATCH [https://www.gnu.org/software/libc/manual/html_node/Wildcard-Matching.html#index-FNM_005fEXTMATCH]
is enabled, which allows extended pattern matching.
Examples:

	clear: zone – Clears the zone section.

	clear: mod-* – Clears all module sections.

	clear: "[!z]*" – Clears all sections not beginning with letter z.

	clear: !(zone) – (GNU only) Clears all sections except the zone one.

	clear: @(zone|template) – (GNU only) Clears the zone and template sections.

Default: not set

module section

Dynamic modules loading configuration.

Note

If configured with non-empty --with-moduledir=path parameter, all
shared modules in this directory will be automatically loaded.

module:
 - id: STR
 file: STR

id

A module identifier in the form of the mod- prefix and module name suffix.

file

A path to a shared library file with the module implementation.

Warning

If the path is not absolute, the library is searched in the set of
system directories. See man dlopen for more details.

Default: ${libdir}/knot/modules-${version}/module_name.so
(or ${path}/module_name.so if configured with --with-moduledir=path)

server section

General options related to the server.

server:
 identity: [STR]
 version: [STR]
 nsid: [STR|HEXSTR]
 rundir: STR
 user: STR[:STR]
 pidfile: STR
 udp-workers: INT
 tcp-workers: INT
 background-workers: INT
 async-start: BOOL
 tcp-idle-timeout: TIME
 tcp-io-timeout: INT
 tcp-remote-io-timeout: INT
 tcp-max-clients: INT
 tcp-reuseport: BOOL
 tcp-fastopen: BOOL
 quic-max-clients: INT
 quic-outbuf-max-size: SIZE
 quic-idle-close-timeout: TIME
 remote-pool-limit: INT
 remote-pool-timeout: TIME
 remote-retry-delay: INT
 socket-affinity: BOOL
 udp-max-payload: SIZE
 udp-max-payload-ipv4: SIZE
 udp-max-payload-ipv6: SIZE
 key-file: STR
 cert-file: STR
 edns-client-subnet: BOOL
 answer-rotation: BOOL
 automatic-acl: BOOL
 proxy-allowlist: ADDR[/INT] | ADDR-ADDR ...
 dbus-event: none | running | zone-updated | ksk-submission | dnssec-invalid ...
 dbus-init-delay: TIME
 listen: ADDR[@INT] | STR ...
 listen-quic: ADDR[@INT] ...
 listen-tls: ADDR[@INT] ...

Caution

When you change configuration parameters dynamically or via configuration file
reload, some parameters in the Server section require restarting the Knot server
so that the changes take effect. See below for the details.

identity

An identity of the server returned in the response to the query for TXT
record id.server. or hostname.bind. in the CHAOS class (RFC 4892 [https://datatracker.ietf.org/doc/html/rfc4892.html]).
Set to an empty value to disable.

Default: FQDN hostname

version

A version of the server software returned in the response to the query
for TXT record version.server. or version.bind. in the CHAOS
class (RFC 4892 [https://datatracker.ietf.org/doc/html/rfc4892.html]). Set to an empty value to disable.

Default: server version

nsid

A DNS name server identifier (RFC 5001 [https://datatracker.ietf.org/doc/html/rfc5001.html]). Set to an empty value to disable.

Default: FQDN hostname at the moment of the daemon start

rundir

A path for storing run-time data (PID file, unix sockets, etc.). A non-absolute
path is relative to the knotd startup directory.

Depending on the usage of this parameter, its change may require restart of the Knot
server to take effect.

Default: ${localstatedir}/run/knot (configured with --with-rundir=path)

user

A system user with an optional system group (user:group) under which the
server is run after starting and binding to interfaces. Linux capabilities
are employed if supported.

Change of this parameter requires restart of the Knot server to take effect.

Default: root:root

pidfile

A PID file location.

Change of this parameter requires restart of the Knot server to take effect.

Default: rundir/knot.pid

udp-workers

A number of UDP workers (threads) used to process incoming queries
over UDP.

Change of this parameter requires restart of the Knot server to take effect.

Default: equal to the number of online CPUs

tcp-workers

A number of TCP workers (threads) used to process incoming queries
over TCP.

Change of this parameter requires restart of the Knot server to take effect.

Default: equal to the number of online CPUs, default value is at least 10

background-workers

A number of workers (threads) used to execute background operations (zone
loading, zone updates, etc.).

Change of this parameter requires restart of the Knot server to take effect.

Default: equal to the number of online CPUs, default value is at most 10

async-start

If enabled, server doesn't wait for the zones to be loaded and starts
responding immediately with SERVFAIL answers until the zone loads.

Default: off

tcp-idle-timeout

Maximum idle time (in seconds) between requests on an inbound TCP connection.
It means if there is no activity on an inbound TCP connection during this limit,
the connection is closed by the server.

Minimum: 1

Default: 10

tcp-io-timeout

Maximum time (in milliseconds) to receive or send one DNS message over an inbound
TCP connection. It means this limit applies to normal DNS queries and replies,
incoming DDNS, and outgoing zone transfers. The timeout is measured since some
data is already available for processing.
Set to 0 for infinity.

Default: 500 (milliseconds)

Caution

In order to reduce the risk of Slow Loris attacks, it's recommended setting
this limit as low as possible on public servers.

tcp-remote-io-timeout

Maximum time (in milliseconds) to receive or send one DNS message over an outbound
TCP connection which has already been established to a configured remote server.
It means this limit applies to incoming zone transfers, sending NOTIFY,
DDNS forwarding, and DS check or push. This timeout includes the time needed
for a network round-trip and for a query processing by the remote.
Set to 0 for infinity.

Default: 5000 (milliseconds)

tcp-reuseport

If enabled, each TCP worker listens on its own socket and the OS kernel
socket load balancing is employed using SO_REUSEPORT (or SO_REUSEPORT_LB
on FreeBSD). Due to the lack of one shared socket, the server can offer
higher response rate processing over TCP. However, in the case of
time-consuming requests (e.g. zone transfers of a TLD zone), enabled reuseport
may result in delayed or not being responded client requests. So it is
advisable to use this option on secondary servers.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

tcp-fastopen

If enabled, use TCP Fast Open for outbound TCP communication (client side):
incoming zone transfers, sending NOTIFY, and DDNS forwarding. This mode simplifies
TCP handshake and can result in better networking performance. TCP Fast Open
for inbound TCP communication (server side) isn't affected by this
configuration as it's enabled automatically if supported by OS.

Note

The TCP Fast Open support must also be enabled on the OS level:

	Linux/macOS: ensure kernel parameter net.ipv4.tcp_fastopen is 2 or
3 for server side, and 1 or 3 for client side.

	FreeBSD: ensure kernel parameter net.inet.tcp.fastopen.server_enable
is 1 for server side, and net.inet.tcp.fastopen.client_enable is
1 for client side.

Default: off

quic-max-clients

A maximum number of QUIC clients connected in parallel.

See also quic.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 128

Default: 10000 (ten thousand)

quic-outbuf-max-size

Maximum cumulative size of memory used for buffers of unACKed
sent messages. This limit is per one UDP worker.

Note

Set low if little memory is available (together with quic-max-clients
since QUIC connections are memory-heavy). Set to high value if outgoing zone
transfers of big zone over QUIC are expected.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 1M (1 MiB)

Default: 100M (100 MiB)

quic-idle-close-timeout

Time in seconds, after which any idle QUIC connection is gracefully closed.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 1

Default: 4

remote-pool-limit

If nonzero, the server will keep up to this number of outgoing TCP connections
open for later use. This is an optimization to avoid frequent opening of
TCP connections to the same remote.

Change of this parameter requires restart of the Knot server to take effect.

Default: 0

remote-pool-timeout

The timeout in seconds after which the unused kept-open outgoing TCP connections
to remote servers are closed.

Default: 5

remote-retry-delay

When a connection attempt times out to some remote address, this information will be
kept for this specified time (in milliseconds) and other connections to the same address won't
be attempted. This prevents repetitive waiting for timeout on an unreachable remote.

Default: 0

socket-affinity

If enabled and if SO_REUSEPORT is available on Linux, all configured network
sockets are bound to UDP and TCP workers in order to increase the networking performance.
This mode isn't recommended for setups where the number of network card queues
is lower than the number of UDP or TCP workers.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

tcp-max-clients

A maximum number of TCP clients connected in parallel, set this below the file
descriptor limit to avoid resource exhaustion.

Note

It is advisable to adjust the maximum number of open files per process in your
operating system configuration.

Default: one half of the file descriptor limit for the server process

udp-max-payload

Maximum EDNS0 UDP payload size default for both IPv4 and IPv6.

Default: 1232

udp-max-payload-ipv4

Maximum EDNS0 UDP payload size for IPv4.

Default: 1232

udp-max-payload-ipv6

Maximum EDNS0 UDP payload size for IPv6.

Default: 1232

key-file

Path to a server key PEM file which is used for DNS over QUIC/TLS communication.
A non-absolute path of a user specified key file is relative to the
@config_dir@ directory.

Default: auto-generated key

cert-file

Path to a server certificate PEM file which is used for DNS over QUIC/TLS communication.
A non-absolute path is relative to the @config_dir@ directory.

Default: one-time in-memory certificate

edns-client-subnet

Enable or disable EDNS Client Subnet support. If enabled, responses to queries
containing the EDNS Client Subnet option
always contain a valid EDNS Client Subnet option according to RFC 7871 [https://datatracker.ietf.org/doc/html/rfc7871.html].

Default: off

answer-rotation

Enable or disable sorted-rrset rotation in the answer section of normal replies.
The rotation shift is simply determined by a query ID.

Default: off

automatic-acl

If enabled, automatic ACL setting of
configured remotes is considered when evaluating authorized operations.

Default: off

proxy-allowlist

An ordered list of IP addresses, network subnets, or network ranges
which are allowed as a source address of proxied DNS traffic over UDP.
The supported proxy protocol is
haproxy PROXY v2 [https://www.haproxy.org/download/2.5/doc/proxy-protocol.txt].

Note

TCP is not supported.

Default: not set

dbus-event

Specification of server or zone states which emit a D-Bus signal on the system
bus. The bus name is cz.nic.knotd, the object path is /cz/nic/knotd, and
the interface name is cz.nic.knotd.events.

Possible values:

	none – No signal is emitted.

	running – There are two possible signals emitted:

	started when the server is started and all configured zones (including
catalog zones and their members) are loaded or successfully bootstrapped.

	stopped when the server shutdown sequence is initiated.

	zone-updated – The signal zone_updated is emitted when a zone has been updated;
the signal parameters are zone name and zone SOA serial.

	keys-updated - The signal keys_updated is emitted when a DNSSEC key set
is updated; the signal parameter is zone name.

	ksk-submission – The signal zone_ksk_submission is emitted if there is
a ready KSK present when the zone is signed; the signal parameters are
zone name, KSK keytag, and KSK KASP id.

	dnssec-invalid – The signal zone_dnssec_invalid is emitted when DNSSEC
validation fails; the signal parameters are zone name, and remaining seconds
until an RRSIG expires.

Note

This function requires systemd version at least 221 or libdbus.

Change of this parameter requires restart of the Knot server to take effect.

Default: none

dbus-init-delay

Time in seconds which the server waits upon D-Bus initialization to ensure
the D-Bus client is ready to receive signals.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 0

Default: 1

listen

One or more IP addresses where the server listens for incoming queries.
Optional port specification (default is 53) can be appended to each address
using @ separator. Use 0.0.0.0 for all configured IPv4 addresses or
:: for all configured IPv6 addresses. Filesystem path can be specified
for listening on local unix SOCK_STREAM socket. Non-absolute path
(i.e. not starting with /) is relative to rundir.
Non-local address binding is automatically enabled if supported by the operating system.

Change of this parameter requires restart of the Knot server to take effect.

Default: not set

listen-quic

One or more IP addresses (and optionally ports) where the server listens
for incoming queries over QUIC protocol.

Change of this parameter requires restart of the Knot server to take effect.

Default: not set

listen-tls

One or more IP addresses (and optionally ports) where the server listens
for incoming queries over TLS protocol (DoT).

Change of this parameter requires restart of the Knot server to take effect.

Default: not set

xdp section

Various options related to XDP listening, especially TCP.

xdp:
 listen: STR[@INT] | ADDR[@INT] ...
 udp: BOOL
 tcp: BOOL
 quic: BOOL
 quic-port: INT
 tcp-max-clients: INT
 tcp-inbuf-max-size: SIZE
 tcp-outbuf-max-size: SIZE
 tcp-idle-close-timeout: TIME
 tcp-idle-reset-timeout: TIME
 tcp-resend-timeout: TIME
 route-check: BOOL
 ring-size: INT
 busypoll-budget: INT
 busypoll-timeout: INT

Caution

When you change configuration parameters dynamically or via configuration file
reload, some parameters in the XDP section require restarting the Knot server
so that the changes take effect.

listen

One or more network device names (e.g. ens786f0) on which the Mode XDP
is enabled. Alternatively, an IP address can be used instead of a device name,
but the server will still listen on all addresses belonging to the same interface!
Optional port specification (default is 53) can be appended to each device name
or address using @ separator.

Change of this parameter requires restart of the Knot server to take effect.

Caution

If XDP workers only process regular DNS traffic over UDP, it is strongly
recommended to also listen on the addresses which are
intended to offer the DNS service, at least to fulfil the DNS requirement for
working TCP.

Note

Incoming DDNS over XDP isn't supported.
The server always responds with SERVFAIL.

Default: not set

udp

If enabled, DNS over UDP is processed with XDP workers.

Change of this parameter requires restart of the Knot server to take effect.

Default: on

tcp

If enabled, DNS over TCP traffic is processed with XDP workers.

The TCP stack limitations:

	Congestion control is not implemented.

	Lost packets that do not contain TCP payload may not be resend.

	Not optimized for transfers of non-trivial zones.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

quic

If enabled, DNS over QUIC is processed with XDP workers.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

quic-port

DNS over QUIC will listen on the interfaces configured by listen,
but on different port, configured by this option.

Change of this parameter requires restart of the Knot server to take effect.

Default: 853

tcp-max-clients

A maximum number of TCP clients connected in parallel.

Minimum: 1024

Default: 1000000 (one million)

tcp-inbuf-max-size

Maximum cumulative size of memory used for buffers of incompletely
received messages.

Minimum: 1M (1 MiB)

Default: 100M (100 MiB)

tcp-outbuf-max-size

Maximum cumulative size of memory used for buffers of unACKed
sent messages.

Minimum: 1M (1 MiB)

Default: 100M (100 MiB)

tcp-idle-close-timeout

Time in seconds, after which any idle connection is gracefully closed.

Minimum: 1

Default: 10

tcp-idle-reset-timeout

Time in seconds, after which any idle connection is forcibly closed.

Minimum: 1

Default: 20

tcp-resend-timeout

Resend outgoing data packets (with DNS response payload) if not ACKed
before this timeout (in seconds).

Minimum: 1

Default: 5

route-check

If enabled, routing information from the operating system is considered
when processing every incoming DNS packet received over the XDP interface:

	If the outgoing interface of the corresponding DNS response differs from
the incoming one, the packet is processed normally by UDP/TCP workers
(XDP isn't used).

	If the destination address is blackholed, unreachable, or prohibited,
the DNS packet is dropped without any response.

	The destination MAC address and possible VLAN tag for the response are taken
from the routing system.

If disabled, symmetrical routing is applied. It means that the query source
MAC address is used as a response destination MAC address. Possible VLAN tag
is preserved.

Change of this parameter requires restart of the Knot server to take effect.

Note

This mode requires forwarding enabled on the loopback interface
(sysctl -w net.ipv4.conf.lo.forwarding=1 and sysctl -w net.ipv6.conf.lo.forwarding=1).
If forwarding is disabled, all incoming DNS packets are dropped!

Only VLAN 802.1Q is supported.

Default: off

ring-size

Size of RX, FQ, TX, and CQ rings.

Change of this parameter requires restart of the Knot server to take effect.

Note

This value should be at least as high as the configured RX size of the
network device in the XDP mode.

Default: 2048

busypoll-budget

If set to a positive value, preferred busy polling is enabled with the
specified budget.

Change of this parameter requires restart of the Knot server to take effect.

Note

Preferred busy polling also requires setting napi_defer_hard_irqs and
gro_flush_timeout for the appropriate network interface. E.g.:

echo 2 | sudo tee /sys/class/net/<interface>/napi_defer_hard_irqs
echo 200000 | sudo tee /sys/class/net/<interface>/gro_flush_timeout

Note

A recommended value is between 8 and 64.

Default: 0 (disabled)

busypoll-timeout

Timeout in microseconds of preferrred busy polling if enabled by
busypoll-budget.

Change of this parameter requires restart of the Knot server to take effect.

Default: 20 (20 microseconds)

control section

Configuration of the server control interface.

control:
 listen: STR
 backlog: INT
 timeout: TIME

listen

A UNIX socket path where the server listens for
control commands.

Change of this parameter requires restart of the Knot server to take effect.

Default: rundir/knot.sock

backlog

The control UNIX socket listen backlog size.

Change of this parameter requires restart of the Knot server to take effect.

Default: 5

timeout

Maximum time (in seconds) the control socket operations can take.
Set to 0 for infinity.

Default: 5

log section

Server can be configured to log to the standard output, standard error
output, syslog (or systemd journal if systemd is enabled) or into an arbitrary
file.

There are 6 logging severity levels:

	critical – Non-recoverable error resulting in server shutdown.

	error – Recoverable error, action should be taken.

	warning – Warning that might require user action.

	notice – Server notice or hint.

	info – Informational message.

	debug – Debug or detailed message.

In the case of a missing log section, warning or more serious messages
will be logged to both standard error output and syslog. The info and
notice messages will be logged to standard output.

log:
 - target: stdout | stderr | syslog | STR
 server: critical | error | warning | notice | info | debug
 control: critical | error | warning | notice | info | debug
 zone: critical | error | warning | notice | info | debug
 quic: critical | error | warning | notice | info | debug
 any: critical | error | warning | notice | info | debug

target

A logging output.

Possible values:

	stdout – Standard output.

	stderr – Standard error output.

	syslog – Syslog or systemd journal.

	file_name – A specific file.

With syslog target, syslog service is used. However, if Knot DNS has been compiled
with systemd support and operating system has been booted with systemd, systemd journal
is used for logging instead of syslog.

A file_name may be specified as an absolute path or a path relative to the
knotd startup directory.

server

Minimum severity level for messages related to general operation of the server to be
logged.

Default: not set

control

Minimum severity level for messages related to server control to be logged.

Default: not set

zone

Minimum severity level for messages related to zones to be logged.

Default: not set

quic

Minimum severity level for messages related to QUIC to be logged.

Default: not set

any

Minimum severity level for all message types, except quic, to be logged.

Default: not set

statistics section

Periodic server statistics dumping.

statistics:
 timer: TIME
 file: STR
 append: BOOL

timer

A period (in seconds) after which all available statistics metrics will by written to the
file.

Default: not set

file

A file path of statistics output in the YAML format.

Default: rundir/stats.yaml

append

If enabled, the output will be appended to the file
instead of file replacement.

Default: off

database section

Configuration of databases for zone contents, DNSSEC metadata, or event timers.

database:
 storage: STR
 journal-db: STR
 journal-db-mode: robust | asynchronous
 journal-db-max-size: SIZE
 kasp-db: STR
 kasp-db-max-size: SIZE
 timer-db: STR
 timer-db-max-size: SIZE
 catalog-db: str
 catalog-db-max-size: SIZE

storage

A data directory for storing journal, KASP, and timer databases. A non-absolute
path is relative to the knotd startup directory.

Default: ${localstatedir}/lib/knot (configured with --with-storage=path)

journal-db

An explicit specification of the persistent journal database
directory.

Default: storage/journal

journal-db-mode

Specifies journal LMDB backend configuration, which influences performance
and durability.

Possible values:

	robust – The journal database disk synchronization ensures database
durability but is generally slower.

	asynchronous – The journal database disk synchronization is optimized for
better performance at the expense of lower database durability in the case of
a crash. This mode is recommended on secondary servers with many zones.

Default: robust

journal-db-max-size

The hard limit for the journal database maximum size. There is no cleanup logic
in journal to recover from reaching this limit. Journal simply starts refusing
changes across all zones. Decreasing this value has no effect if it is lower
than the actual database file size.

It is recommended to limit journal-max-usage
per-zone instead of journal-db-max-size
in most cases. Please keep this value larger than the sum of all zones'
journal usage limits. See more details regarding
journal behaviour.

Note

This value also influences server's usage of virtual memory.

Default: 20G (20 GiB), or 512M (512 MiB) for 32-bit

kasp-db

An explicit specification of the KASP database directory.

Default: storage/keys

kasp-db-max-size

The hard limit for the KASP database maximum size.

Note

This value also influences server's usage of virtual memory.

Default: 500M (500 MiB)

timer-db

An explicit specification of the persistent timer
database directory.

Default: storage/timers

timer-db-max-size

The hard limit for the timer database maximum size.

Note

This value also influences server's usage of virtual memory.

Default: 100M (100 MiB)

catalog-db

An explicit specification of the zone catalog
database directory. Only useful if Catalog zones are enabled.

Default: storage/catalog

catalog-db-max-size

The hard limit for the catalog database maximum size.

Note

This value also influences server's usage of virtual memory.

Default: 20G (20 GiB), or 512M (512 MiB) for 32-bit

keystore section

DNSSEC keystore configuration.

keystore:
 - id: STR
 backend: pem | pkcs11
 config: STR
 key-label: BOOL

id

A keystore identifier.

backend

A key storage backend type.

Possible values:

	pem – PEM files.

	pkcs11 – PKCS #11 storage.

Default: pem

config

A backend specific configuration. A directory with PEM files (the path can
be specified as a relative path to kasp-db) or
a configuration string for PKCS #11 storage (<pkcs11-uri> <module-path>).
The PKCS #11 URI Scheme is defined in RFC 7512 [https://datatracker.ietf.org/doc/html/rfc7512.html].

Note

Example configuration string for PKCS #11:

"pkcs11:token=knot;pin-value=1234 /usr/lib64/pkcs11/libsofthsm2.so"

Default: kasp-db/keys

key-label

If enabled in combination with the PKCS #11 backend, generated keys
are labeled in the form <zone_name> KSK|ZSK.

Default: off

key section

Shared TSIG keys used to authenticate communication with the server.

key:
 - id: DNAME
 algorithm: hmac-md5 | hmac-sha1 | hmac-sha224 | hmac-sha256 | hmac-sha384 | hmac-sha512
 secret: BASE64

id

A key name identifier.

Note

This value MUST be exactly the same as the name of the TSIG key on the
opposite primary/secondary server(s).

algorithm

A TSIG key algorithm. See
TSIG Algorithm Numbers [https://www.iana.org/assignments/tsig-algorithm-names/tsig-algorithm-names.xhtml].

Possible values:

	hmac-md5

	hmac-sha1

	hmac-sha224

	hmac-sha256

	hmac-sha384

	hmac-sha512

Default: not set

secret

Shared key secret.

Default: not set

remote section

Definitions of remote servers for outgoing connections (source of a zone
transfer, target for a notification, etc.).

remote:
 - id: STR
 address: ADDR[@INT] | STR ...
 via: ADDR[@INT] ...
 quic: BOOL
 tls: BOOL
 key: key_id
 cert-key: BASE64 ...
 block-notify-after-transfer: BOOL
 no-edns: BOOL
 automatic-acl: BOOL

id

A remote identifier.

address

An ordered list of destination IP addresses or UNIX socket paths which are
used for communication with the remote server. Non-absolute path
(i.e. not starting with /) is relative to rundir.
Optional destination port (default is 53 for UDP/TCP and 853 for QUIC)
can be appended to the address using @ separator.
The addresses are tried in sequence until the
remote is reached.

Default: not set

Note

If the remote is contacted and it refuses to perform requested action,
no more addresses will be tried for this remote.

via

An ordered list of source IP addresses which are used as source addresses
for communication with the remote. For the N-th remote address,
the last, but at most N-th, specified via address
of the same family is used.
This option can help if the server listens on more addresses.
Optional source port (default is random) can be appended
to the address using @ separator.

Default: not set

Note

For the following configuration:

remote:
 - id: example
 address: [198.51.100.10, 2001:db8::10, 198.51.100.20, 2001:db8::20]
 via: [198.51.100.1, 198.51.100.2, 2001:db8::1]

the (via -> address) mapping is:

	198.51.100.1 -> 198.51.100.10

	2001:db8::1 -> 2001:db8::10

	198.51.100.2 -> 198.51.100.20

	2001:db8::1 -> 2001:db8::20

quic

If this option is set, the QUIC protocol will be used for outgoing communication
with this remote.

Note

One connection per each remote is opened; remote-pool-limit
does not take effect for QUIC. However, fast QUIC handshakes utilizing obtained
session tickets are used for reopening connections to recently (up to 1 day)
queried remotes.

Default: off

tls

If this option is set, the TLS (DoT) protocol will be used for outgoing communication
with this remote.

Default: off

key

A reference to the TSIG key which is used to authenticate
the communication with the remote server.

Default: not set

cert-key

An ordered list of remote certificate public key PINs. If the list is non-empty,
communication with the remote is possible only via QUIC protocol and
a peer certificate is required. The peer certificate key must match one of the
specified PINs.

A PIN is a unique identifier that represents the public key of the peer certificate.
It's a base64-encoded SHA-256 hash of the public key. This identifier
remains the same on a certificate renewal.

Default: not set

block-notify-after-transfer

When incoming AXFR/IXFR from this remote (as a primary server), suppress
sending NOTIFY messages to all configured secondary servers.

Default: off

no-edns

If enabled, no OPT record (EDNS) is inserted to outgoing requests to this
remote server. This mode is necessary for communication with some broken
implementations (e.g. Windows Server 2016).

Note

This option effectively disables zone expire timer
updates via EDNS EXPIRE option specified in RFC 7314 [https://datatracker.ietf.org/doc/html/rfc7314.html].

Default: off

automatic-acl

If enabled, some authorized operations for the remote are automatically allowed
based on the context:

	Incoming NOTIFY is allowed from the remote if it's configured as a
primary server for the zone.

	Outgoing zone transfer is allowed to the remote if it's configured as a
NOTIFY target for the zone.

Automatic ACL rules are evaluated before explicit zone ACL configuration.

Note

This functionality requires global activation via
automatic-acl in the server section.

Default: on

remotes section

Definitions of groups of remote servers. Remote grouping can simplify the
configuration.

remotes:
 - id: STR
 remote: remote_id ...

id

A remote group identifier.

remote

An ordered list of references to remote server definitions.

Default: not set

acl section

Access control list rule definitions. An ACL rule is a description of one
or more authorized actions (zone transfer request, zone change notification,
and dynamic DNS update) which are allowed to be processed or denied. Queries
which don't require authorization are always allowed.

acl:
 - id: STR
 address: ADDR[/INT] | ADDR-ADDR | STR ...
 key: key_id ...
 cert-key: BASE64 ...
 remote: remote_id | remotes_id ...
 action: query | notify | transfer | update ...
 protocol: udp | tcp | tls | quic ...
 deny: BOOL
 update-type: STR ...
 update-owner: key | zone | name
 update-owner-match: sub-or-equal | equal | sub | pattern
 update-owner-name: STR ...

id

An ACL rule identifier.

address

An ordered list of IP addresses, absolute UNIX socket paths, network subnets,
or network ranges. The query's
source address must match one of them. If this item is not set, address match is not
required.

Default: not set

key

An ordered list of references to TSIG keys. The query must
match one of them. If this item is not set, transaction authentication is not used.

Default: not set

cert-key

An ordered list of remote certificate public key PINs. If the list is non-empty,
communication with the remote is possible only via QUIC protocol and
a peer certificate is required. The peer certificate key must match one of the
specified PINs.

A PIN is a unique identifier that represents the public key of the peer certificate.
It's a base64-encoded SHA-256 hash of the public key. This identifier
remains the same on a certificate renewal.

Default: not set

remote

An ordered list of references remote and
remotes. The query must
match one of the remotes. Specifically, one of the remote's addresses and remote's
TSIG key if configured must match.

Note

This option cannot be specified along with the address,
key, or protocol option at one ACL item.

Default: not set

action

An ordered list of allowed, or denied, actions (request types).

Possible values:

	query – Allow regular DNS query. As normal queries are always allowed,
this action is only useful in combination with TSIG key.

	notify – Allow incoming notify (NOTIFY).

	transfer – Allow zone transfer (AXFR, IXFR).

	update – Allow zone updates (DDNS).

Default: query

protocol

List of allowed protocols.

Possible values:

	udp – UDP protocol.

	tcp – TCP protocol.

	tls – TLS protocol.

	quic – QUIC protocol.

Default: not set (any)

deny

If enabled, instead of allowing, deny the matching combination of the specified items.

Default: off

update-type

A list of allowed types of Resource Records in a zone update. Every record in an update
must match one of the specified types.

Default: not set

update-owner

This option restricts possible owners of Resource Records in a zone update by comparing
them to either the TSIG key identity, the current zone name, or to a list of
domain names given by the update-owner-name option.
The comparison method is given by the update-owner-match option.

Possible values:

	key — The owner of each updated RR must match the identity of the TSIG key if used.

	name — The owner of each updated RR must match at least one name in the
update-owner-name list.

	zone — The owner of each updated RR must match the current zone name.

Default: not set

update-owner-match

This option defines how the owners of Resource Records in an update are matched to the domain name(s)
set by the update-owner option.

Possible values:

	sub-or-equal — The owner of each RR in an update must either be equal to
or be a subdomain of at least one domain name set by update-owner.

	equal — The owner of each updated RR must be equal to at least one domain
name set by update-owner.

	sub — The owner of each updated RR must be a subdomain of, but MUST NOT
be equal to at least one domain name set by update-owner.

	pattern — The owner of each updated RR must match a pattern specified by
update-owner. The pattern can be an arbitrary FQDN or non-FQDN
domain name. If a label consists of one * (asterisk) character, it
matches any label. More asterisk labels can be specified.

Default: sub-or-equal

update-owner-name

A list of allowed owners of RRs in a zone update used with update-owner
set to name. Every listed owner name which is not FQDN (i.e. it doesn't end
in a dot) is considered as if it was appended with the target zone name.
Such a relative owner name specification allows better ACL rule reusability across
multiple zones.

Default: not set

submission section

Parameters of KSK submission checks.

submission:
 - id: STR
 parent: remote_id | remotes_id ...
 check-interval: TIME
 timeout: TIME
 parent-delay: TIME

id

A submission identifier.

parent

A list of references remote and remotes
to parent's DNS servers to be checked for
presence of corresponding DS records in the case of KSK submission. All of them must
have a corresponding DS for the rollover to continue. If none is specified, the
rollover must be pushed forward manually.

Default: not set

Tip

A DNSSEC-validating resolver can be set as a parent.

check-interval

Interval (in seconds) for periodic checks of DS presence on parent's DNS
servers, in the case of the KSK submission.

Default: 1h (1 hour)

timeout

After this time period (in seconds) the KSK submission is automatically considered
successful, even if all the checks were negative or no parents are configured.
Set to 0 for infinity.

Default: 0

parent-delay

After successful parent DS check, wait for this period (in seconds) before
continuing the next key roll-over step. This delay shall cover the propagation
delay of update in the parent zone.

Default: 0

dnskey-sync section

Parameters of DNSKEY dynamic-update synchronization.

dnskey-sync:
 - id: STR
 remote: remote_id | remotes_id ...
 check-interval: TIME

id

A dnskey-sync identifier.

remote

A list of references remote and remotes
to other signers or common master, which the DDNS updates with
DNSKEY/CDNSKEY/CDS records shall be sent to.

Default: not set

check-interval

If the last DNSKEY sync failed or resulted in any change, re-check
the consistence after this interval (in seconds) and re-try if needed.

Default: 60 (1 minute)

policy section

DNSSEC policy configuration.

policy:
 - id: STR
 keystore: keystore_id
 manual: BOOL
 single-type-signing: BOOL
 algorithm: rsasha1 | rsasha1-nsec3-sha1 | rsasha256 | rsasha512 | ecdsap256sha256 | ecdsap384sha384 | ed25519 | ed448
 ksk-size: SIZE
 zsk-size: SIZE
 ksk-shared: BOOL
 dnskey-ttl: TIME
 zone-max-ttl: TIME
 keytag-modulo: INT/INT
 ksk-lifetime: TIME
 zsk-lifetime: TIME
 delete-delay: TIME
 propagation-delay: TIME
 rrsig-lifetime: TIME
 rrsig-refresh: TIME
 rrsig-pre-refresh: TIME
 reproducible-signing: BOOL
 nsec3: BOOL
 nsec3-iterations: INT
 nsec3-opt-out: BOOL
 nsec3-salt-length: INT
 nsec3-salt-lifetime: TIME
 signing-threads: INT
 ksk-submission: submission_id
 ds-push: remote_id | remotes_id ...
 cds-cdnskey-publish: none | delete-dnssec | rollover | always | double-ds
 cds-digest-type: sha256 | sha384
 dnskey-management: full | incremental
 offline-ksk: BOOL
 unsafe-operation: none | no-check-keyset | no-update-dnskey | no-update-nsec | no-update-expired ...

id

A policy identifier.

keystore

A reference to a keystore holding private key material
for zones.

Default: an imaginary keystore with all default values

Note

A configured keystore called "default" won't be used unless explicitly referenced.

manual

If enabled, automatic key management is not used.

Default: off

single-type-signing

If enabled, Single-Type Signing Scheme is used in the automatic key management
mode.

Default: off (module onlinesign has default on)

algorithm

An algorithm of signing keys and issued signatures. See
DNSSEC Algorithm Numbers [https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml#dns-sec-alg-numbers-1].

Possible values:

	rsasha1

	rsasha1-nsec3-sha1

	rsasha256

	rsasha512

	ecdsap256sha256

	ecdsap384sha384

	ed25519

	ed448

Note

Ed448 algorithm is only available if compiled with GnuTLS 3.6.12+ and Nettle 3.6+.

Default: ecdsap256sha256

ksk-size

A length of newly generated KSK or
CSK keys.

Default: 2048 (rsa*), 256 (ecdsap256), 384 (ecdsap384), 256 (ed25519),
456 (ed448)

zsk-size

A length of newly generated ZSK keys.

Default: see default for ksk-size

ksk-shared

If enabled, all zones with this policy assigned will share one or more KSKs.
More KSKs can be shared during a KSK rollover.

Warning

As the shared KSK set is bound to the policy id, renaming the
policy breaks this connection and new shared KSK set is initiated when
a new KSK is needed.

Default: off

dnskey-ttl

A TTL value for DNSKEY records added into zone apex.

Note

Has influence over ZSK key lifetime.

Warning

Ensure all DNSKEYs with updated TTL are propagated before any subsequent
DNSKEY rollover starts.

Default: zone SOA TTL

zone-max-ttl

Declare (override) maximal TTL value among all the records in zone.

Note

It's generally recommended to override the maximal TTL computation by setting this
explicitly whenever possible. It's required for DNSSEC Offline KSK and
really reasonable when records are generated dynamically
(e.g. by a module).

Default: computed after zone is loaded

keytag-modulo

Specifies that the keytags of any generated keys shall be congruent by specified modulo.
The option value must be a string in the format R/M, where R < M <= 256 are
positive integers. Whenever a DNSSEC key is generated, it is ensured
that keytag % M == R. This prevents keytag conflict in DNSSEC Offline KSK
or DNSSEC multi-signer (and possibly other) setups.

Note

This only applies to newly generated keys when they are generated. Keys from
before this option and keys imported from elsewhere might not fulfill the policy.

Default: 0/1

ksk-lifetime

A period (in seconds) between KSK generation and the next rollover initiation.

Note

KSK key lifetime is also influenced by propagation-delay, dnskey-ttl,
and KSK submission delay.

Zero (aka infinity) value causes no KSK rollover as a result.

This applies for CSK lifetime if single-type-signing is enabled.

Default: 0 (infinity)

zsk-lifetime

A period (in seconds) between ZSK activation and the next rollover initiation.

Note

More exactly, this period is measured since a ZSK is activated,
and after this, a new ZSK is generated to replace it within
following roll-over.

As a consequence, in normal operation, this results in the period
of ZSK generation being zsk-lifetime + propagation-delay + dnskey_ttl.

Zero (aka infinity) value causes no ZSK rollover as a result.

Default: 30d (30 days)

delete-delay

Once a key (KSK or ZSK) is rolled-over and removed from the zone,
keep it in the KASP database for at least this period (in seconds) before deleting
it completely. This might be useful in some troubleshooting cases when resurrection
is needed.

Default: 0

propagation-delay

An extra delay added for each key rollover step. This value (in seconds)
should be high enough to cover propagation of data from the primary server
to all secondary servers, as well as the duration of signing routine itself
and possible outages in signing and propagation infrastructure. In other
words, this delay should ensure that within this period of time after
planned change of the key set, all public-facing secondaries will already
serve new DNSKEY RRSet for sure.

Note

Has influence over ZSK key lifetime.

Default: 1h (1 hour)

rrsig-lifetime

A validity period (in seconds) of newly issued signatures.

Note

The RRSIG's signature inception time is set to 90 minutes in the past. This
time period is not counted to the signature lifetime.

Default: 14d (14 days)

rrsig-refresh

A period (in seconds) how long at least before a signature expiration the signature
will be refreshed, in order to prevent expired RRSIGs on secondary servers or
resolvers' caches.

Default: 0.1 * rrsig-lifetime + propagation-delay + zone-max-ttl

If dnssec-validation is enabled:

Default: 1d (1 day)

rrsig-pre-refresh

A period (in seconds) how long at most before a signature refresh time the signature
might be refreshed, in order to refresh RRSIGs in bigger batches on a frequently updated
zone (avoid re-sign event too often).

Default: 1h (1 hour)

reproducible-signing

For ECDSA algorithms, generate RRSIG signatures deterministically (RFC 6979 [https://datatracker.ietf.org/doc/html/rfc6979.html]).
Besides better theoretical cryptographic security, this mode allows significant
speed-up of loading signed (by the same method) zones. However, the zone signing
is a bit slower.

Default: off

nsec3

Specifies if NSEC3 will be used instead of NSEC.

Default: off

nsec3-iterations

A number of additional times the hashing is performed.

Default: 0

nsec3-opt-out

If set, NSEC3 records won't be created for insecure delegations.
This speeds up the zone signing and reduces overall zone size.

Warning

NSEC3 with the Opt-Out bit set no longer works as a proof of non-existence
in this zone.

Default: off

nsec3-salt-length

A length of a salt field in octets, which is appended to the original owner
name before hashing.

Default: 8

nsec3-salt-lifetime

A validity period (in seconds) of newly issued salt field.

Zero value means infinity.

Special value -1 triggers re-salt every time when active ZSK changes.
This optimizes the number of big changes to the zone.

Default: 30d (30 days)

signing-threads

When signing zone or update, use this number of threads for parallel signing.

Those are extra threads independent of Background workers.

Note

Some steps of the DNSSEC signing operation are not parallelized.

Default: 1 (no extra threads)

ksk-submission

A reference to submission section holding parameters of
KSK submission checks.

Default: not set

ds-push

Optional references remote and remotes
to authoritative DNS server of the
parent's zone. The remote server must be configured to accept DS record
updates via DDNS. Whenever a CDS record in the local zone is changed, the
corresponding DS record is sent as a dynamic update (DDNS) to the parent
DNS server. All previous DS records are deleted within the DDNS message.
It's possible to manage both child and parent zones by the same Knot DNS server.

Note

This feature requires cds-cdnskey-publish
not to be set to none.

Note

The mentioned change to CDS record usually means that a KSK roll-over is running
and the new key being rolled-in is in "ready" state already for the period of
propagation-delay.

Note

Module Onlinesign doesn't support DS push.

Note

When turning this feature on while a KSK roll-over is already running, it might
not take effect for the already-running roll-over.

Default: not set

dnskey-sync

A reference to dnskey-sync section holding parameters
of DNSKEY synchronization.

Default: not set

cds-cdnskey-publish

Controls if and how shall the CDS and CDNSKEY be published in the zone.

Possible values:

	none – Never publish any CDS or CDNSKEY records in the zone.

	delete-dnssec – Publish special CDS and CDNSKEY records indicating turning off DNSSEC.

	rollover – Publish CDS and CDNSKEY records for ready and not yet active KSK (submission phase of KSK rollover).

	always – Always publish one CDS and one CDNSKEY records for the current KSK.

	double-ds – Always publish up to two CDS and two CDNSKEY records for ready and/or active KSKs.

Note

If the zone keys are managed manually, the CDS and CDNSKEY rrsets may contain
more records depending on the keys available.

Warning

The double-ds value does not trigger double-DS roll-over method. That method is
only supported when performed manually, with unset ksk-submission.

Default: rollover

cds-digest-type

Specify digest type for published CDS records.

Default: sha256

dnskey-management

Specify how the DNSKEY, CDNSKEY, and CDS RRSets at the zone apex are handled
when (re-)signing the zone.

Possible values:

	full – Upon every zone (re-)sign, delete all unknown DNSKEY, CDNSKEY, and CDS
records and keep just those that are related to the zone keys stored in the KASP database.

	incremental – Keep unknown DNSKEY, CDNSKEY, and CDS records in the zone, and
modify server-managed records incrementally by employing changes in the KASP database.

Note

Prerequisites for incremental:

	The Offline KSK isn't supported.

	The delete-delay is long enough to cover possible daemon
shutdown (e.g. due to server maintenance).

	Avoided manual deletion of keys with keymgr.

Otherwise there might remain some DNSKEY records in the zone, belonging to
deleted keys.

Default: full

offline-ksk

Specifies if Offline KSK feature is enabled.

Default: off

unsafe-operation

Turn off some DNSSEC safety features.

Possible values:

	none – Nothing disabled.

	no-check-keyset – Don't check active keys in present algorithms. This may
lead to violation of RFC 4035#section-2.2 [https://datatracker.ietf.org/doc/html/rfc4035.html#section-2.2].

	no-update-dnskey – Don't maintain/update DNSKEY, CDNSKEY, and CDS records
in the zone apex according to KASP database. Juste leave them as they are in the zone.

	no-update-nsec – Don't maintain/update NSEC/NSEC3 chain. Leave all the records
as they are in the zone.

	no-update-expired – Don't update expired RRSIGs.

Multiple values may be specified.

Warning

This mode is intended for DNSSEC experts who understand the corresponding consequences.

Default: none

template section

A template is shareable zone settings, which can simplify configuration by
reducing duplicates. A special default template (with the default identifier)
can be used for global zone configuration or as an implicit configuration
if a zone doesn't have another template specified.

template:
 - id: STR
 global-module: STR/STR ...
 # All zone options (excluding 'template' item)

Note

If an item is explicitly specified both in the referenced template and
the zone, the template item value is overridden by the zone item value.

id

A template identifier.

global-module

An ordered list of references to query modules in the form of module_name or
module_name/module_id. These modules apply to all queries.

Note

This option is only available in the default template.

Default: not set

zone section

Definition of zones served by the server.

zone:
 - domain: DNAME
 template: template_id
 storage: STR
 file: STR
 master: remote_id | remotes_id ...
 ddns-master: remote_id
 notify: remote_id | remotes_id ...
 acl: acl_id ...
 master-pin-tolerance: TIME
 provide-ixfr: BOOL
 semantic-checks: BOOL | soft
 default-ttl: TIME
 zonefile-sync: TIME
 zonefile-load: none | difference | difference-no-serial | whole
 journal-content: none | changes | all
 journal-max-usage: SIZE
 journal-max-depth: INT
 ixfr-benevolent: BOOL
 ixfr-by-one: BOOL
 ixfr-from-axfr: BOOL
 zone-max-size : SIZE
 adjust-threads: INT
 dnssec-signing: BOOL
 dnssec-validation: BOOL
 dnssec-policy: policy_id
 ds-push: remote_id | remotes_id ...
 zonemd-verify: BOOL
 zonemd-generate: none | zonemd-sha384 | zonemd-sha512 | remove
 serial-policy: increment | unixtime | dateserial
 serial-modulo: INT/INT
 reverse-generate: DNAME
 refresh-min-interval: TIME
 refresh-max-interval: TIME
 retry-min-interval: TIME
 retry-max-interval: TIME
 expire-min-interval: TIME
 expire-max-interval: TIME
 catalog-role: none | interpret | generate | member
 catalog-template: template_id ...
 catalog-zone: DNAME
 catalog-group: STR
 module: STR/STR ...

domain

A zone name identifier.

template

A reference to a configuration template.

Default: not set or default (if the template exists)

storage

A data directory for storing zone files. A non-absolute path is relative to
the knotd startup directory.

Default: ${localstatedir}/lib/knot (configured with --with-storage=path)

file

A path to the zone file. It is also possible to use
the following formatters:

	%c[N] or %c[N-M] – Means the Nth
character or a sequence of characters beginning from the Nth and ending
with the Mth character of the textual zone name (see %s). The
indexes are counted from 0 from the left. All dots (including the terminal
one) are considered. If the character is not available, the formatter has no effect.

	%l[N] – Means the Nth label of the textual zone name
(see %s). The index is counted from 0 from the right (0 ~ TLD).
If the label is not available, the formatter has no effect.

	%s – Means the current zone name in the textual representation.
The zone name doesn't include the terminating dot (the result for the root
zone is the empty string!).

	%% – Means the % character.

Warning

Beware of special characters which are escaped or encoded in the \DDD form
where DDD is corresponding decimal ASCII code.

Default: storage/%s.zone

master

An ordered list of references remote and
remotes to zone primary servers
(formerly known as master servers).
Empty value is allowed for template value overriding.

Default: not set

ddns-master

A reference to a zone primary master where DDNS messages
should be forwarded to. If not specified, the first master
server is used.

If set to the empty value (""), incoming DDNS messages aren't forwarded but are applied
to the local zone instead, no matter if it is a secondary server. This is only allowed in
combination with dnssec-signing enabled.

Default: not set

notify

An ordered list of references remote and
remotes to secondary servers to which notify
message is sent if the zone changes.
Empty value is allowed for template value overriding.

Default: not set

acl

An ordered list of references to ACL rules which can allow
or disallow zone transfers, updates or incoming notifies.

Default: not set

master-pin-tolerance

If set to a nonzero value on a secondary, always request AXFR/IXFR from the same
primary as the last time, effectively pinning one primary. Only when another
primary is updated and the current one lags behind for the specified amount of time
(defined by this option in seconds), change to the updated primary and force AXFR.

This option is useful when multiple primaries may have different zone history
in their journals, making it unsafe to combine interchanged IXFR
from different primaries.

Default: 0 (disabled)

provide-ixfr

If disabled, the server is forced to respond with AXFR to IXFR queries.
If enabled, IXFR requests are responded normally.

Default: on

semantic-checks

Selects if extra zone semantic checks are used or impacts of the mandatory checks.

There are several mandatory checks which are always enabled and cannot be turned
off. An error in a mandatory check causes the zone not to be loaded. Most of
the mandatory checks can be weakened by setting soft, which allows the zone to
be loaded even if the check fails.

If enabled, extra checks are used. These checks don't prevent the zone from loading.

The mandatory checks are applied to zone files, zone transfers, and updates via
control interface. The extra checks are applied to zone files only!

Mandatory checks:

	Missing SOA record at the zone apex (RFC 1034 [https://datatracker.ietf.org/doc/html/rfc1034.html]) (*)

	An extra record exists together with a CNAME record except for RRSIG and NSEC (RFC 1034 [https://datatracker.ietf.org/doc/html/rfc1034.html])

	Multiple CNAME records with the same owner exist (RFC 1034 [https://datatracker.ietf.org/doc/html/rfc1034.html])

	DNAME record having a record under it (RFC 6672 [https://datatracker.ietf.org/doc/html/rfc6672.html])

	Multiple DNAME records with the same owner exist (RFC 6672 [https://datatracker.ietf.org/doc/html/rfc6672.html])

	NS record exists together with a DNAME record (RFC 6672 [https://datatracker.ietf.org/doc/html/rfc6672.html])

	DS record exists at the zone apex (RFC 3658 [https://datatracker.ietf.org/doc/html/rfc3658.html])

(*) The marked check can't be weakened by the soft mode. All other mandatory checks
are subject to the optional soft mode.

Extra checks:

	Missing NS record at the zone apex

	Missing glue A or AAAA record

	Invalid DS or NSEC3PARAM record

	CDS or CDNSKEY inconsistency

	All other DNSSEC checks executed during dnssec-validation

Note

The soft mode allows the refresh event to ignore a CNAME response to a SOA
query (malformed message) and triggers a zone bootstrap instead.

Default: off

default-ttl

The default TTL value if none is specified in a zone file or zone insertion
using the dynamic configuration.

Warning

As changing this value can result in differently parsed zone file(s),
the corresponding zone SOA serial(s) should be incremented before
reloading or committing the configuration. Alternatively, setting
zonefile-load to difference-no-serial ensures
the resulting zone(s) update is correct.

Default: 3600

zonefile-sync

The time in seconds after which the current zone in memory will be synced with
a zone file on the disk (see file). The server will serve the latest
zone even after a restart using zone journal, but the zone file on the disk will
only be synced after zonefile-sync time has expired (or after manual zone
flush). This is applicable when the zone is updated via IXFR, DDNS or automatic
DNSSEC signing. In order to completely disable automatic zone file synchronization,
set the value to -1. In that case, it is still possible to force a manual zone flush
using the -f option.

Note

If you are serving large zones with frequent updates where
the immediate sync with a zone file is not desirable, increase the value.

Default: 0 (immediate)

zonefile-load

Selects how the zone file contents are applied during zone load.

Possible values:

	none – The zone file is not used at all.

	difference – If the zone contents are already available during server start or reload,
the difference is computed between them and the contents of the zone file. This difference
is then checked for semantic errors and applied to the current zone contents.

	difference-no-serial – Same as difference, but the SOA serial in the zone file is
ignored, the server takes care of incrementing the serial automatically.

	whole – Zone contents are loaded from the zone file.

When difference is configured and there are no zone contents yet (cold start
and no zone contents in the journal), it behaves the same way as whole.

Default: whole

Note

See Handling zone file, journal, changes, serials for guidance on
configuring these and related options to ensure reliable operation.

journal-content

Selects how the journal shall be used to store zone and its changes.

Possible values:

	none – The journal is not used at all.

	changes – Zone changes history is stored in journal.

	all – Zone contents and history is stored in journal.

Default: changes

Warning

When this option is changed, the journal still contains data respective to
the previous setting. For example, changing it to none does not purge
the journal. Also, changing it from all to changes
does not cause the deletion of the zone-in-journal and the behaviour of the
zone loading procedure might be different than expected. It is recommended
to consider purging the journal when this option is changed.

journal-max-usage

Policy how much space in journal DB will the zone's journal occupy.

Note

Journal DB may grow far above the sum of journal-max-usage across
all zones, because of DB free space fragmentation.

Default: 100M (100 MiB)

journal-max-depth

Maximum history length of the journal.

Note

Zone-in-journal changeset isn't counted to the limit.

Minimum: 2

Default: 20

ixfr-benevolent

If enabled, incoming IXFR is applied even when it contains removals of non-existing
or additions of existing records.

Default: off

ixfr-by-one

Within incoming IXFR, process only one changeset at a time, not multiple together.
This preserves the complete history in the journal and prevents the merging of
changesets when multiple changesets are IXFRed simultaneously. However, this does not
prevent the merging (or deletion) of old changesets in the journal to save space,
as described in journal behaviour.

This option leads to increased server load when processing IXFR, including
network traffic.

Default: off

ixfr-from-axfr

If a primary sends AXFR-style-IXFR upon an IXFR request, compute the difference
and process it as an incremental zone update (e.g. by storing the changeset in
the journal).

Default: off

zone-max-size

Maximum size of the zone. The size is measured as size of the zone records
in wire format without compression. The limit is enforced for incoming zone
transfers and dynamic updates.

For incremental transfers (IXFR), the effective limit for the total size of
the records in the transfer is twice the configured value. However the final
size of the zone must satisfy the configured value.

Default: unlimited

adjust-threads

Parallelize internal zone adjusting procedures by using specified number of
threads. This is useful with huge zones with NSEC3. Speedup observable at
server startup and while processing NSEC3 re-salt.

Default: 1 (no extra threads)

dnssec-signing

If enabled, automatic DNSSEC signing for the zone is turned on.

Default: off

dnssec-validation

If enabled, the zone contents are validated for being correctly signed
(including NSEC/NSEC3 chain) with DNSSEC signatures every time the zone
is loaded or changed (including AXFR/IXFR).

When the validation fails, the zone being loaded or update being applied
is cancelled with an error, and either none or previous zone state is published.

List of DNSSEC checks:

	Every zone RRSet is correctly signed by at least one present DNSKEY.

	For every RRSIG there are at most 3 non-matching DNSKEYs with the same keytag.

	DNSKEY RRSet is signed by KSK.

	NSEC(3) RR exists for each name (unless opt-out) with correct bitmap.

	Every NSEC(3) RR is linked to the lexicographically next one.

The validation is not affected by dnssec-policy configuration,
except for signing-threads option, which specifies the number
of threads for parallel validation, and rrsig-refresh, which
defines minimal allowed remaining RRSIG validity (otherwise a warning is
logged).

Note

Redundant or garbage NSEC3 records are ignored.

This mode is not compatible with dnssec-signing.

Default: not set

dnssec-policy

A reference to DNSSEC signing policy.

Note

A configured policy called "default" won't be used unless explicitly referenced.

Default: an imaginary policy with all default values

ds-push

Per zone configuration of ds-push. This option overrides possible
per policy option. Empty value is allowed for template value overriding.

Default: not set

zonemd-verify

On each zone load/update, verify that ZONEMD is present in the zone and valid.

Note

Zone digest calculation may take much time and CPU on large zones.

Default: off

zonemd-generate

On each zone update, calculate ZONEMD and put it into the zone.

Possible values:

	none – No action regarding ZONEMD.

	zonemd-sha384 – Generate ZONEMD using SHA384 algorithm.

	zonemd-sha512 – Generate ZONEMD using SHA512 algorithm.

	remove – Remove any ZONEMD from the zone apex.

Default: none

serial-policy

Specifies how the zone serial is updated after a dynamic update or
automatic DNSSEC signing. If the serial is changed by the dynamic update,
no change is made.

Possible values:

	increment – The serial is incremented according to serial number arithmetic.

	unixtime – The serial is set to the current unix time.

	dateserial – The 10-digit serial (YYYYMMDDnn) is incremented, the first
8 digits match the current iso-date.

Note

If the resulting serial for unixtime or dateserial is lower than or
equal to the current serial (this happens e.g. when migrating from other policy or
frequent updates), the serial is incremented instead.

To avoid user confusion, use dateserial only if you expect at most
100 updates per day per zone and unixtime only if you expect at most
one update per second per zone.

Generated catalog zones use unixtime only.

Default: increment (unixtime for generated catalog zones)

serial-modulo

Specifies that the zone serials shall be congruent by specified modulo.
The option value must be a string in the format R/M, where R < M <= 256 are
positive integers. Whenever the zone serial is incremented, it is ensured
that serial % M == R. This can be useful in the case of multiple inconsistent
primaries, where distinct zone serial sequences prevent cross-master-IXFR
by any secondary.

Note

In order to ensure the congruent policy, this option is only allowed
with DNSSEC signing enabled and
zonefile-load to be either difference-no-serial or none.

Because the zone serial effectively always increments by M instead of
1, it is not recommended to use dateserial serial-policy
or even unixtime in case of rapidly updated zone.

Default: 0/1

reverse-generate

This option triggers the automatic generation of reverse PTR records based on
A/AAAA records in the specified zone. The entire generated zone is automatically
stored in the journal.

Current limitations:

	Only one zone to be reversed can be specified.

	Is slow for large zones (even when changing a little).

Default: none

refresh-min-interval

Forced minimum zone refresh interval (in seconds) to avoid flooding primary server.

Minimum: 2

Default: 2

refresh-max-interval

Forced maximum zone refresh interval (in seconds).

Default: not set

retry-min-interval

Forced minimum zone retry interval (in seconds) to avoid flooding primary server.

Minimum: 1

Default: 1

retry-max-interval

Forced maximum zone retry interval (in seconds).

Default: not set

expire-min-interval

Forced minimum zone expire interval (in seconds) to avoid flooding primary server.

Minimum: 3

Default: 3

expire-max-interval

Forced maximum zone expire interval (in seconds).

Default: not set

catalog-role

Trigger zone catalog feature. Possible values:

	none – Not a catalog zone.

	interpret – A catalog zone which is loaded from a zone file or XFR,
and member zones shall be configured based on its contents.

	generate – A catalog zone whose contents are generated according to
assigned member zones.

	member – A member zone that is assigned to one generated catalog zone.

Note

If set to generate, the zonefile-load option has no effect
since a zone file is never loaded.

Default: none

catalog-template

For the catalog member zones, the specified configuration template will be applied.

Multiple catalog templates may be defined. The first one is used unless the member zone
has the group property defined, matching another catalog template.

Note

This option must be set if and only if catalog-role is interpret.

Nested catalog zones aren't supported. Therefore catalog templates can't
contain catalog-role set to interpret or generate.

Default: not set

catalog-zone

Assign this member zone to specified generated catalog zone.

Note

This option must be set if and only if catalog-role is member.

The referenced catalog zone must exist and have catalog-role set to generate.

Default: not set

catalog-group

Assign this member zone to specified catalog group (configuration template).

Note

This option has effect if and only if catalog-role is member.

Default: not set

module

An ordered list of references to query modules in the form of module_name or
module_name/module_id. These modules apply only to the current zone queries.

Default: not set

Modules

authsignal – Automatic Authenticated DNSSEC Bootstrapping records

This module is able to synthesize records for automatic DNSSEC bootstrapping
(RFC 9615 [https://datatracker.ietf.org/doc/html/rfc9615.html]).

Records are synthesized only if the query can't be satisfied from the zone.

Synthesized records also need to be signed. Typically, this can be done
using the onlinesign module, as shown below.

Example

Automatic forward records

mod-onlinesign:
 - id: authsignal
 nsec-bitmap: [CDS, CDNSKEY]

zone:
 - domain: example.net
 dnssec-signing: on
 - domain: _signal.ns1.example.com
 module: [mod-authsignal, mod-onlinesign/authsignal]

Result:

$ kdig CDS _dsboot.example.net._signal.ns1.example.com.
...
;; QUESTION SECTION:
;; _dsboot.example.net._signal.ns1.example.com. IN CDS

;; ANSWER SECTION:
_dsboot.example.net._signal.ns1.example.com. 0 IN CDS 45504 13 2 2F2D518FD9DBB2B1403F51398A9931F2832B89F0F85C146B130D383FC23584FA

cookies — DNS Cookies

DNS Cookies (RFC 7873 [https://datatracker.ietf.org/doc/html/rfc7873.html]) is a lightweight security mechanism against
denial-of-service and amplification attacks. The server keeps a secret value
(the Server Secret), which is used to generate a cookie, which is sent to
the client in the OPT RR. The server then verifies the authenticity of the client
by the presence of a correct cookie. Both the server and the client have to
support DNS Cookies, otherwise they are not used.

Note

This module introduces two statistics counters:

	presence – The number of queries containing the COOKIE option.

	dropped – The number of dropped queries due to the slip limit.

Warning

For effective module operation the RRL module must also
be enabled and configured after Cookies. See
Query modules how to configure modules.

Example

It is recommended to enable DNS Cookies globally, not per zone. The module may be used without any further configuration.

template:
 - id: default
 global-module: mod-cookies # Enable DNS Cookies globally

Module configuration may be supplied if necessary.

mod-cookies:
 - id: default
 secret-lifetime: 30h # The Server Secret is regenerated every 30 hours
 badcookie-slip: 3 # The server replies only to every third query with a wrong cookie

template:
 - id: default
 global-module: mod-cookies/default # Enable DNS Cookies globally

The value of the Server Secret may also be managed manually using the secret option. In this case
the server does not automatically regenerate the Server Secret.

mod-cookies:
 - id: default
 secret: 0xdeadbeefdeadbeefdeadbeefdeadbeef

Module reference

mod-cookies:
 - id: STR
 secret-lifetime: TIME
 badcookie-slip: INT
 secret: STR | HEXSTR

id

A module identifier.

secret-lifetime

This option configures in seconds how often the Server Secret is regenerated.
The maximum allowed value is 36 days (RFC 7873#section-7.1 [https://datatracker.ietf.org/doc/html/rfc7873.html#section-7.1]).

Default: 26h (26 hours)

badcookie-slip

This option configures how often the server responds to queries containing
an invalid cookie by sending them the correct cookie.

	The value 1 means that the server responds to every query.

	The value 2 means that the server responds to every second query with
an invalid cookie, the rest of the queries is dropped.

	The value N > 2 means that the server responds to every Nth
query with an invalid cookie, the rest of the queries is dropped.

Default: 1

secret

Use this option to set the Server Secret manually. If this option is used, the
Server Secret remains the same until changed manually and the secret-lifetime option is ignored.
The size of the Server Secret currently MUST BE 16 bytes, or 32 hexadecimal characters.

Default: not set

dnsproxy – Tiny DNS proxy

The module forwards all queries, or all specific zone queries if configured
per zone, to the indicated server for resolution. If configured in the fallback
mode, only locally unsatisfied queries are forwarded. I.e. a tiny DNS proxy.
There are several uses of this feature:

	A substitute public-facing server in front of the real one

	Local zones (poor man's "views"), rest is forwarded to the public-facing server

	Using the fallback to forward queries to a resolver

	etc.

Note

The module does not alter the query/response as the resolver would,
and the original transport protocol is kept as well.

Example

The configuration is straightforward and just a single remote server is
required:

remote:
 - id: hidden
 address: 10.0.1.1

mod-dnsproxy:
 - id: default
 remote: hidden
 fallback: on

template:
 - id: default
 global-module: mod-dnsproxy/default

zone:
 - domain: local.zone

When clients query for anything in the local.zone, they will be
responded to locally. The rest of the requests will be forwarded to the
specified server (10.0.1.1 in this case).

Module reference

mod-dnsproxy:
 - id: STR
 remote: remote_id
 timeout: INT
 address: ADDR[/INT] | ADDR-ADDR | STR ...
 fallback: BOOL
 tcp-fastopen: BOOL
 catch-nxdomain: BOOL

id

A module identifier.

remote

A reference to a remote server where the queries are
forwarded to.

Required

Note

If the remote has more addresses configured, other addresses are used
sequentially as fallback. In this case, for the N-th address the N-th via address
is taken if configured.

timeout

A remote response timeout in milliseconds.

Default: 500 (milliseconds)

address

An ordered list of IP addresses, absolute UNIX socket paths, network subnets,
or network ranges.
If the query's source address does not fall into any of the configured ranges, the
query isn't forwarded.

Default: not set

fallback

If enabled, locally unsatisfied queries leading to REFUSED (no zone) are forwarded.
If disabled, all queries are directly forwarded without any local attempts
to resolve them.

Default: on

tcp-fastopen

If enabled, TCP Fast Open is used when forwarding TCP queries.

Default: off

catch-nxdomain

If enabled, locally unsatisfied queries leading to NXDOMAIN are forwarded.
This option is only relevant in the fallback mode.

Default: off

dnstap – Dnstap traffic logging

A module for query and response logging based on the dnstap [https://dnstap.info/] library.
You can capture either all or zone-specific queries and responses; usually
you want to do the former.

Example

The configuration comprises only a sink path parameter,
which can be either a file, a UNIX socket, or a TCP address:

mod-dnstap:
 - id: capture_all
 sink: /tmp/capture.tap

template:
 - id: default
 global-module: mod-dnstap/capture_all

Note

To be able to use a Unix socket you need an external program to create it.
Knot DNS connects to it as a client using the libfstrm library. It operates
exactly like syslog.

Note

Dnstap log files can also be created or read using kdig.

Module reference

For all queries logging, use this module in the default template. For
zone-specific logging, use this module in the proper zone configuration.

mod-dnstap:
 - id: STR
 sink: STR
 identity: STR
 version: STR
 log-queries: BOOL
 log-responses: BOOL
 responses-with-queries: BOOL

id

A module identifier.

sink

A sink path, which can be either a file, a UNIX socket when prefixed with
unix:, or a TCP address@port when prefixed with tcp:. The file may
be specified as an absolute path or a path relative to
the knotd startup directory.

Required

Warning

File is overwritten on server startup or reload.

identity

A DNS server identity. Set empty value to disable.

Default: FQDN hostname

version

A DNS server version. Set empty value to disable.

Default: server version

log-queries

If enabled, query messages will be logged.

Default: on

log-responses

If enabled, response messages will be logged.

Default: on

responses-with-queries

If enabled, dnstap AUTH_RESPONSE messages will also include the original
query message as well as the response message sent by the server.

Default: off

geoip — Geography-based responses

This module offers response tailoring based on client's
subnet, geographic location, or a statistical weight. It supports GeoIP databases
in the MaxMind DB format, such as GeoIP2 [https://dev.maxmind.com/geoip/geoip2/downloadable/]
or the free version GeoLite2 [https://dev.maxmind.com/geoip/geoip2/geolite2/].

The module can be enabled only per zone.

Note

If EDNS Client Subnet support is enabled
and if a query contains this option, the module takes advantage of this
information to provide a more accurate response.

DNSSEC support

There are several ways to enable DNSSEC signing of tailored responses.

Full zone signing

If automatic DNSSEC signing is enabled,
the whole zone is signed by the server and all alternative RRsets, which are responded
by the module, are pre-signed when the module is loaded.

This has a speed benefit, however note that every RRset configured in the module should
have a default RRset of the same type contained in the zone, so that the NSEC(3)
chain can be built correctly. Also, it is STRONGLY RECOMMENDED to use
manual key management in this setting,
as the corresponding zone has to be reloaded when the signing key changes and to
have better control over key synchronization to all instances of the server.

Note

DNSSEC keys for computing record signatures MUST exist in the KASP database
or be generated before the module is launched, otherwise the module fails to
compute the signatures and does not load.

Module signing

If automatic DNSSEC signing is disabled,
it's possible to combine externally pre-signed zone with module pre-signing
of the alternative RRsets when the module is loaded. In this mode, only ZSK
has to be present in the KASP database. Also in this mode every RRset configured
in the module should have a default RRset of the same type contained in the zone.

Example:

policy:
 - id: presigned_zone
 manual: on
 unsafe-operation: no-check-keyset

mod-geoip:
 - id: geo_dnssec
 ...
 dnssec: on
 policy: presigned_zone

zone:
 - domain: example.com.
 module: mod-geoip/geo_dnssec

Online signing

Alternatively, the geoip module may be combined with the
onlinesign module and the tailored responses can be signed
on the fly. This approach is much more computationally demanding for the server.

Note

If the GeoIP module is used with online signing, it is recommended to set the nsec-bitmap
option of the onlinesign module to contain all Resource Record types potentially generated by the module.

Example

An example configuration:

mod-geoip:
 - id: default
 config-file: /path/to/geo.conf
 ttl: 20
 mode: geodb
 geodb-file: /path/to/GeoLite2-City.mmdb
 geodb-key: [country/iso_code, city/names/en]

zone:
 - domain: example.com.
 module: mod-geoip/default

Configuration file

Every instance of the module requires an additional config-file
in which the desired responses to queries from various locations are configured.
This file has the following simple format:

domain-name1:
 - geo|net|weight: value1
 RR-Type1: RDATA
 RR-Type2: RDATA
 ...
 - geo|net|weight: value2
 RR-Type1: RDATA
 ...
domain-name2:
...

Module configuration examples

This section contains some examples for the module's config-file.

Using subnets

foo.example.com:
 - net: 10.0.0.0/24
 A: [192.168.1.1, 192.168.1.2]
 AAAA: [2001:DB8::1, 2001:DB8::2]
 TXT: "subnet\ 10.0.0.0/24"
 ...
bar.example.com:
 - net: 2001:DB8::/32
 A: 192.168.1.3
 AAAA: 2001:DB8::3
 TXT: "subnet\ 2001:DB8::/32"
...

Clients from the specified subnets will receive the responses defined in the
module config. Others will receive the default records defined in the zone (if any).

Note

If a space or a quotation mark is a part of record data, such a character
must be prefixed with a backslash. The following notations are equivalent:

Multi-word\ string
"Multi-word\ string"
"\"Multi-word string\""

Using geographic locations

foo.example.com:
 - geo: "CZ;Prague"
 CNAME: cz.foo.example.com.
 - geo: "US;Las Vegas"
 CNAME: vegas.foo.example.net.
 - geo: "US;*"
 CNAME: us.foo.example.net.
...

Clients from the specified geographic locations will receive the responses defined in the
module config. Others will receive the default records defined in the zone (if any). See
geodb-key for the syntax and semantics of the location definitions.

Using weighted records

foo.example.com:
 - weight: 1
 CNAME: canary.foo.example.com.
 - weight: 10
 CNAME: prod1.foo.example.com.
 - weight: 10
 CNAME: prod2.foo.example.com.
...

Each response is generated through a random pick where each defined record has a likelihood
of its weight over the sum of all weights for the requested name to. Records defined in the
zone itself (if any) will never be served.

Result:

$ for i in $(seq 1 100); do kdig @192.168.1.242 CNAME foo.example.com +short; done | sort | uniq -c
 3 canary.foo.example.com.foo.example.com.
 52 prod1.foo.example.net.foo.example.com.
 45 prod2.foo.example.net.foo.example.com.

Module reference

mod-geoip:
 - id: STR
 config-file: STR
 ttl: TIME
 mode: geodb | subnet | weighted
 dnssec: BOOL
 policy: policy_id
 geodb-file: STR
 geodb-key: STR ...

id

A module identifier.

config-file

A path to the response configuration file as described above. A non-absolute
path is relative to the knotd startup directory.

Required

ttl

The time to live of Resource Records returned by the module, in seconds.

Default: 60

mode

The mode of operation of the module.

Possible values:

	subnet – Responses are tailored according to subnets.

	geodb – Responses are tailored according to geographic data retrieved
from the configured database.

	weighted – Responses are tailored according to a statistical weight.

Default: subnet

dnssec

If explicitly enabled, the module signs positive responses based on the module policy
(policy). If explicitly disabled, positive responses from the
module are not signed even if the zone is pre-signed or signed by the server
(dnssec-signing).

Warning

This configuration must be used carefully. Otherwise the zone responses
can be bogus.
DNSKEY rotation isn't supported. So manual mode is highly
recommended.

Default: current value of dnssec-signing with dnssec-policy

policy

A reference to DNSSEC signing policy which is used if
dnssec is enabled.

Default: an imaginary policy with all default values

geodb-file

A path to a .mmdb file containing the GeoIP database. A non-absolute
path is relative to the knotd startup directory.

Required if mode is set to geodb

geodb-key

Multi-valued item, can be specified up to 8 times. Each geodb-key specifies
a path to a key in a node in the supplied GeoIP database. The module currently supports
two types of values: string or 32-bit unsigned int. In the latter
case, the key has to be prefixed with (id). Common choices of keys include:

	continent/code

	country/iso_code

	(id)country/geoname_id

	city/names/en

	(id)city/geoname_id

	isp

	...

The exact keys available depend on the database being used. To get the full list
of keys available, you can e.g. do a sample lookup on your database with the
mmdblookup [https://maxmind.github.io/libmaxminddb/mmdblookup.html] tool.

In the zone's config file for the module the values of the keys are entered in the same order
as the keys in the module's configuration, separated by a semicolon. Enter the value "*"
if the key is allowed to have any value.

noudp — No UDP response

The module sends empty truncated reply to a query over UDP. Replies over TCP
are not affected.

Example

To enable this module for all configured zones and every UDP reply:

template:
 - id: default
 global-module: mod-noudp

Or with specified UDP allow rate:

mod-noudp:
 - id: sometimes
 udp-allow-rate: 1000 # Don't truncate every 1000th UDP reply

template:
 - id: default
 module: mod-noudp/sometimes

Module reference

mod-noudp:
 - id: STR
 udp-allow-rate: INT
 udp-truncate-rate: INT

Note

Both udp-allow-rate and udp-truncate-rate cannot be specified together.

udp-allow-rate

Specifies frequency of UDP replies that are not truncated. A non-zero value means
that every Nth UDP reply is not truncated.

Note

The rate value is associated with one UDP worker. If more UDP workers are
configured, the specified value may not be obvious to clients.

Default: not set

udp-truncate-rate

Specifies frequency of UDP replies that are truncated (opposite of
udp-allow-rate). A non-zero value means that
every Nth UDP reply is truncated.

Note

The rate value is associated with one UDP worker. If more UDP workers are
configured, the specified value may not be obvious to clients.

Default: 1

onlinesign — Online DNSSEC signing

The module provides online DNSSEC signing. Instead of pre-computing the zone
signatures when the zone is loaded into the server or instead of loading an
externally signed zone, the signatures are computed on-the-fly during
answering.

The main purpose of the module is to enable authenticated responses with
zones which use other dynamic module (e.g., automatic reverse record
synthesis) because these zones cannot be pre-signed. However, it can be also
used as a simple signing solution for zones with low traffic and also as
a protection against zone content enumeration (zone walking).

In order to minimize the number of computed signatures per query, the module
produces a bit different responses from the responses that would be sent if
the zone was pre-signed. Still, the responses should be perfectly valid for
a DNSSEC validating resolver.

Differences from statically signed zones:

	The NSEC records are constructed as Minimally Covering NSEC Records
(RFC 7129#appendix-A [https://datatracker.ietf.org/doc/html/rfc7129.html#appendix-A]). Therefore the generated domain names cover
the complete domain name space in the zone's authority.

	NXDOMAIN responses are promoted to NODATA responses. The module proves
that the query type does not exist rather than that the domain name does not
exist.

	Domain names matching a wildcard are expanded. The module pretends and proves
that the domain name exists rather than proving a presence of the wildcard.

Records synthesized by the module:

	DNSKEY record is synthesized in the zone apex and includes public key
material for the active signing key.

	NSEC records are synthesized as needed.

	RRSIG records are synthesized for authoritative content of the zone.

	CDNSKEY and CDS records are generated as usual to publish valid Secure Entry Point.

Limitations:

	Due to limited interaction between the server and the module,
after any change to KASP DB (including knotc zone-ksk-submitted command)
or when a scheduled DNSSEC event shall be processed (e.g. transition to next
DNSKEY rollover state) the server must be reloaded or queried to the zone
(with the DO bit set) to apply the change or to trigger the event. For optimal
operation, the recommended query frequency is at least ones per second for
each zone configured.

	The NSEC records may differ for one domain name if queried for different
types. This is an implementation shortcoming as the dynamic modules
cooperate loosely. Possible synthesis of a type by other module cannot
be predicted. This dissimilarity should not affect response validation,
even with validators performing aggressive negative caching (RFC 8198 [https://datatracker.ietf.org/doc/html/rfc8198.html]).

	The module isn't compatible with the Offline KSK mode yet.

Recommendations:

	Configure the module with an explicit signing policy which has the
rrsig-lifetime value in the order of hours.

	Note that single-type-signing should be set explicitly to
avoid fallback to backward-compatible default.

Example

	Enable the module in the zone configuration with the default signing policy:

zone:
 - domain: example.com
 module: mod-onlinesign

Or with an explicit signing policy:

policy:
 - id: rsa
 algorithm: RSASHA256
 ksk-size: 2048
 rrsig-lifetime: 25h
 rrsig-refresh: 20h

mod-onlinesign:
 - id: explicit
 policy: rsa

zone:
 - domain: example.com
 module: mod-onlinesign/explicit

Or use manual policy in an analogous manner, see
Manual key management.

	Make sure the zone is not signed and also that the automatic signing is
disabled. All is set, you are good to go. Reload (or start) the server:

$ knotc reload

The following example stacks the online signing with reverse record synthesis
module:

mod-synthrecord:
 - id: lan-forward
 type: forward
 prefix: ip-
 ttl: 1200
 network: 192.168.100.0/24

zone:
 - domain: corp.example.net
 module: [mod-synthrecord/lan-forward, mod-onlinesign]

Module reference

mod-onlinesign:
 - id: STR
 policy: policy_id
 nsec-bitmap: STR ...

id

A module identifier.

policy

A reference to DNSSEC signing policy. A special default
value can be used for the default policy setting.

Default: an imaginary policy with all default values

nsec-bitmap

A list of Resource Record types included in an NSEC bitmap generated by the module.
This option should reflect zone contents or synthesized responses by modules,
such as synthrecord and GeoIP.

Default: [A, AAAA]

probe — DNS traffic probe

The module allows the server to send simplified information about regular DNS
traffic through UNIX sockets. The exported information consists of data blocks
where each data block (datagram) describes one query/response pair. The response
part can be empty. The receiver can be an arbitrary program using libknot interface
(C or Python). In case of high traffic, more channels (sockets) can be configured
to allow parallel processing.

Note

A simple probe client [https://gitlab.nic.cz/knot/knot-dns/-/blob/master/scripts/probe_dump.py] in Python.

Example

Default module configuration:

template:
 - id: default
 global-module: mod-probe

Per zone probe with 8 channels and maximum 1M logs per second limit:

mod-probe:
 - id: custom
 path: /tmp/knot-probe
 channels: 8
 max-rate: 1000000

zone:
 - domain: example.com.
 module: mod-probe/custom

Module reference

mod-probe:
 - id: STR
 path: STR
 channels: INT
 max-rate: INT

id

A module identifier.

path

A directory path where the UNIX sockets are located. A non-absolute path is
relative to the knotd startup directory.

Note

It's recommended to use a directory with the execute permission restricted
to the intended probe consumer process owner only.

Default: rundir

channels

Number of channels (UNIX sockets) the traffic is distributed to. In case of
high DNS traffic which is beeing processed by many UDP/XDP/TCP workers,
using more channels reduces the module overhead.

Default: 1

max-rate

Maximum number of queries/replies per second the probe is allowed to transfer.
If the limit is exceeded, the over-limit traffic is ignored. Zero value means
no limit.

Default: 100000 (one hundred thousand)

queryacl — Limit queries by remote address or target interface

This module provides a simple way to whitelist incoming queries
according to the query's source address or target interface.
It can be used e.g. to create a restricted-access subzone with delegations from the corresponding public zone.
The module may be enabled both globally and per-zone.

Note

The module limits only regular queries. Notify, transfer and update are handled by ACL.

Example

mod-queryacl:
 - id: default
 address: [192.0.2.73-192.0.2.90, 203.0.113.0/24]
 interface: 198.51.100

zone:
 - domain: example.com
 module: mod-queryacl/default

Module reference

mod-queryacl:
 - id: STR
 address: ADDR[/INT] | ADDR-ADDR | STR ...
 interface: ADDR[/INT] | ADDR-ADDR | STR ...

id

A module identifier.

address

An ordered list of IP addresses, absolute UNIX socket paths, network subnets,
or network ranges.
If the query's address does not fall into any
of the configured ranges, NOTAUTH rcode is returned.

Default: not set

interface

An ordered list of IP addresses, absolute UNIX socket paths, network subnets,
or network ranges.
If the interface does not fall into any
of the configured ranges, NOTAUTH rcode is returned. Note that every interface
used has to be configured in listen.

Note

Don't use values 0.0.0.0 and ::0. These values are redundant and don't
work as expected.

Default: not set

rrl — Response rate limiting

Response rate limiting (RRL) is a method to combat DNS reflection amplification
attacks. These attacks rely on the fact that the source address of a UDP query
can be forged, and without a worldwide deployment of BCP38 [https://tools.ietf.org/html/bcp38], such a forgery cannot be prevented.
An attacker can use a DNS server (or multiple servers) as an amplification
source to flood a victim with a large number of unsolicited DNS responses.
RRL lowers the amplification factor of these attacks by sending some
responses as truncated or by dropping them altogether.

This module can also help protect the server from excessive utilization by
limiting incoming packets (including handshakes) based on consumed time.
If a packet is time rate limited, it's dropped. This function works with
all supported non-UDP transport protocols and cannot be configured per zone.

Note

This module introduces three statistics counters:

	slipped – The number of slipped UDP responses.

	dropped – The number of dropped UDP responses due to the rate limit.

	dropped-time – The number of dropped non-UDP packets due to the time rate limit.

Note

If the Cookies module is active, RRL is not applied
to UDP responses with a valid DNS cookie.

Example

You can enable RRL by setting the module globally

template:
 - id: default
 global-module: mod-rrl # Default module configuration

or per zone

mod-rrl:
 - id: custom
 rate-limit: 200

zone:
 - domain: example.com
 module: mod-rrl/custom # Custom module configuration

Module reference

mod-rrl:
 - id: STR
 rate-limit: INT
 instant-limit: INT
 slip: INT
 time-rate-limit: INT
 time-instant-limit: INT
 table-size: INT
 whitelist: ADDR[/INT] | ADDR-ADDR | STR ...
 log-period: INT
 dry-run: BOOL

id

A module identifier.

rate-limit

Maximal allowed number of UDP queries per second from a single IPv6 or IPv4 address.

Rate limiting is performed for the whole address and several chosen prefixes.
The limits of prefixes are constant multiples of rate-limit.

The specific prefixes and multipliers, which might be adjusted in the future, are
for IPv6 /128: 1, /64: 2, /56: 3, /48: 4, /32: 64;
for IPv4 /32: 1, /24: 32, /20: 256, /18: 768.

With each host/network, a counter of unrestricted responses is associated;
if the counter would exceed its capacity, it is not incremented and the response is restricted.
Counters use exponential decay for lowering their values,
i.e. they are lowered by a constant fraction of their value each millisecond.
The specified rate limit is reached, when the number of queries is the same every millisecond;
sending many queries once a second or even a larger timespan leads to a more strict limiting.

Default: 20

instant-limit

Maximal allowed number of queries at a single point in time from a single IPv6 or IPv4 address.
The limits for prefixes use the same multipliers as for rate-limit.

This limit is reached when many queries come from a new host/network,
or after a longer time of inactivity.

The instant-limit sets the actual capacity of each counter of responses,
and together with the rate-limit they set the fraction by which the counter
is periodically lowered.
The instant-limit may be at least rate-limit / 1000, at which point the
counters are zeroed each millisecond.

Default: 50

slip

As attacks using DNS/UDP are usually based on a forged source address,
an attacker could deny services to the victim's netblock if all
responses would be completely blocked. The idea behind SLIP mechanism
is to send each Nth response as truncated, thus allowing client to
reconnect via TCP for at least some degree of service. It is worth
noting, that some responses can't be truncated (e.g. SERVFAIL).

	Setting the value to 0 will cause that all rate-limited responses will
be dropped. The outbound bandwidth and packet rate will be strictly capped
by the rate-limit option. All legitimate requestors affected
by the limit will face denial of service and will observe excessive timeouts.
Therefore this setting is not recommended.

	Setting the value to 1 will cause that all rate-limited responses will
be sent as truncated. The amplification factor of the attack will be reduced,
but the outbound data bandwidth won't be lower than the incoming bandwidth.
Also the outbound packet rate will be the same as without RRL.

	Setting the value to 2 will cause that approximately half of the rate-limited responses
will be dropped, the other half will be sent as truncated. With this
configuration, both outbound bandwidth and packet rate will be lower than the
inbound. On the other hand, the dropped responses enlarge the time window
for possible cache poisoning attack on the resolver.

	Setting the value to anything larger than 2 will keep on decreasing
the outgoing rate-limited bandwidth, packet rate, and chances to notify
legitimate requestors to reconnect using TCP. These attributes are inversely
proportional to the configured value. Setting the value high is not advisable.

Default: 1

time-rate-limit

This limit works similarly to rate-limit but considers the time
consumed (in microseconds) by the remote over non-UDP transport protocols.

Default: 4000 (microseconds)

time-instant-limit

This limit works similarly to instant-limit but considers the time
consumed (in microseconds) by the remote over non-UDP transport protocols.

Default: 5000 (microseconds)

table-size

Maximal number of stored hosts/networks with their counters.
The data structure tries to store only the most frequent sources,
so it is safe to set it according to the expected maximal number of limited ones.

Use 1.4 * maximum_qps / rate-limit,
where maximum_qps is the number of queries which can be handled by the server per second.
There is at most maximum_qps / rate-limit limited hosts;
larger networks have higher limits and so require only a fraction of the value (handled by the 1.4 multiplier).
The value will be rounded up to the nearest power of two.

The same table size is used for both counting-based and time-based limiting;
the maximum number of time-limited hosts is expected to be lower, so it's not typically needed to be considered.
There is at most 1 000 000 * #cpus / time-rate-limit of them.

The memory occupied by one table structure is 8 * table-size B.

Default: 524288

whitelist

An ordered list of IP addresses, absolute UNIX socket paths, network subnets,
or network ranges to exempt from rate limiting.
Empty list means that no incoming connection will be white-listed.

Default: not set

log-period

Minimal time in milliseconds between two log messages,
or zero to disable logging.

If a response is limited, the address and the prefix on which it was blocked is logged
and logging is disabled for the log-period milliseconds.
As long as limiting is needed, one source is logged each period
and sources with more blocked queries have greater probability to be chosen.

The approach is used by counting-based and time-based limiting separately,
so you can expect one message per log-period from each of them.

Default: 0 (disabled)

dry-run

If enabled, the module doesn't alter any response. Only query classification
is performed with possible statistics counter incrementation.

Default: off

stats — Query statistics

The module extends server statistics with incoming DNS request and corresponding
response counters, such as used network protocol, total number of responded bytes,
etc (see module reference for full list of supported counters).
This module should be configured as the last module.

Note

Server initiated communication (outgoing NOTIFY, incoming *XFR,...) is not
counted by this module.

Note

Leading 16-bit message size over TCP is not considered.

Example

Common statistics with default module configuration:

template:
 - id: default
 global-module: mod-stats

Per zone statistics with explicit module configuration:

mod-stats:
 - id: custom
 edns-presence: on
 query-type: on

template:
 - id: default
 module: mod-stats/custom

Module reference

mod-stats:
 - id: STR
 request-protocol: BOOL
 server-operation: BOOL
 request-bytes: BOOL
 response-bytes: BOOL
 edns-presence: BOOL
 flag-presence: BOOL
 response-code: BOOL
 request-edns-option: BOOL
 response-edns-option: BOOL
 reply-nodata: BOOL
 query-type: BOOL
 query-size: BOOL
 reply-size: BOOL

id

A module identifier.

request-protocol

If enabled, all incoming requests are counted by the network protocol:

	udp4 - UDP over IPv4

	tcp4 - TCP over IPv4

	quic4 - QUIC over IPv4

	tls4 - TLS over IPv4

	udp6 - UDP over IPv6

	tcp6 - TCP over IPv6

	quic6 - QUIC over IPv6

	tls6 - TLS over IPv6

	udp4-xdp - UDP over IPv4 through XDP

	tcp4-xdp - TCP over IPv4 through XDP

	quic4-xdp - QUIC over IPv4 through XDP

	udp6-xdp - UDP over IPv6 through XDP

	tcp6-xdp - TCP over IPv6 through XDP

	quic6-xdp - QUIC over IPv6 through XDP

Default: on

server-operation

If enabled, all incoming requests are counted by the server operation. The
server operation is based on message header OpCode and message query (meta) type:

	query - Normal query operation

	update - Dynamic update operation

	notify - NOTIFY request operation

	axfr - Full zone transfer operation

	ixfr - Incremental zone transfer operation

	invalid - Invalid server operation

Default: on

request-bytes

If enabled, all incoming request bytes are counted by the server operation:

	query - Normal query bytes

	update - Dynamic update bytes

	other - Other request bytes

Default: on

response-bytes

If enabled, outgoing response bytes are counted by the server operation:

	reply - Normal response bytes

	transfer - Zone transfer bytes

	other - Other response bytes

Warning

Dynamic update response bytes are not counted by this module.

Default: on

edns-presence

If enabled, EDNS pseudo section presence is counted by the message direction:

	request - EDNS present in request

	response - EDNS present in response

Default: off

flag-presence

If enabled, some message header flags are counted:

	TC - Truncated Answer in response

	DO - DNSSEC OK in request

Default: off

response-code

If enabled, outgoing response code is counted:

	NOERROR

	...

	NOTZONE

	BADVERS

	...

	BADCOOKIE

	other - All other codes

Note

In the case of multi-message zone transfer response, just one counter is
incremented.

Warning

Dynamic update response code is not counted by this module.

Default: on

request-edns-option

If enabled, EDNS options in requests are counted by their code:

	CODE0

	...

	EDNS-KEY-TAG (CODE14)

	other - All other codes

Default: off

response-edns-option

If enabled, EDNS options in responses are counted by their code. See
request-edns-option.

Default: off

reply-nodata

If enabled, NODATA pseudo RCODE (RFC 2308#section-2.2 [https://datatracker.ietf.org/doc/html/rfc2308.html#section-2.2]) is counted by the
query type:

	A

	AAAA

	other - All other types

Default: off

query-type

If enabled, normal query type is counted:

	A (TYPE1)

	...

	TYPE65

	SPF (TYPE99)

	...

	TYPE110

	ANY (TYPE255)

	...

	TYPE260

	other - All other types

Note

Not all assigned meta types (IXFR, AXFR,...) have their own counters,
because such types are not processed as normal query.

Default: off

query-size

If enabled, normal query message size distribution is counted by the size range
in bytes:

	0-15

	16-31

	...

	272-287

	288-65535

Default: off

reply-size

If enabled, normal reply message size distribution is counted by the size range
in bytes:

	0-15

	16-31

	...

	4080-4095

	4096-65535

Default: off

synthrecord – Automatic forward/reverse records

This module is able to synthesize either forward or reverse records for
a given prefix and subnet.

Records are synthesized only if the query can't be satisfied from the zone.
Both IPv4 and IPv6 are supported.

Example

Automatic forward records

mod-synthrecord:
 - id: test1
 type: forward
 prefix: dynamic-
 ttl: 400
 network: 2620:0:b61::/52

zone:
 - domain: test.
 file: test.zone # Must exist
 module: mod-synthrecord/test1

Result:

$ kdig AAAA dynamic-2620-0-b61-100--1.test.
...
;; QUESTION SECTION:
;; dynamic-2620-0-b61-100--1.test. IN AAAA

;; ANSWER SECTION:
dynamic-2620-0-b61-100--1.test. 400 IN AAAA 2620:0:b61:100::1

You can also have CNAME aliases to the dynamic records, which are going to be
further resolved:

$ kdig AAAA alias.test.
...
;; QUESTION SECTION:
;; alias.test. IN AAAA

;; ANSWER SECTION:
alias.test. 3600 IN CNAME dynamic-2620-0-b61-100--2.test.
dynamic-2620-0-b61-100--2.test. 400 IN AAAA 2620:0:b61:100::2

Automatic reverse records

mod-synthrecord:
 - id: test2
 type: reverse
 prefix: dynamic-
 origin: test
 ttl: 400
 network: 2620:0:b61::/52

zone:
 - domain: 1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa.
 file: 1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa.zone # Must exist
 module: mod-synthrecord/test2

Result:

$ kdig -x 2620:0:b61::1
...
;; QUESTION SECTION:
;; 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa. IN PTR

;; ANSWER SECTION:
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa. 400 IN PTR dynamic-2620-0-b61--1.test.

Module reference

mod-synthrecord:
 - id: STR
 type: forward | reverse
 prefix: STR
 origin: DNAME
 ttl: INT
 network: ADDR[/INT] | ADDR-ADDR ...
 reverse-short: BOOL

id

A module identifier.

type

The type of generated records.

Possible values:

	forward – Forward records

	reverse – Reverse records

Required

prefix

A record owner prefix.

Note

The value doesn’t allow dots, address parts in the synthetic names are
separated with a dash.

Default: empty

origin

A zone origin (only valid for the reverse type).

Required

ttl

Time to live of the generated records.

Default: 3600

network

An ordered list of IP addresses, network subnets or network ranges
the query must match.

Required

reverse-short

If enabled, a shortened IPv6 address can be used for reverse record rdata synthesis.

Default: on

whoami — Whoami response

The module synthesizes an A or AAAA record containing the query source IP address,
at the apex of the zone being served. It makes sure to allow Knot DNS to generate
cacheable negative responses, and to allow fallback to extra records defined in the
underlying zone file. The TTL of the synthesized record is copied from
the TTL of the SOA record in the zone file.

Because a DNS query for type A or AAAA has nothing to do with whether
the query occurs over IPv4 or IPv6, this module requires a special
zone configuration to support both address families. For A queries, the
underlying zone must have a set of nameservers that only have IPv4
addresses, and for AAAA queries, the underlying zone must have a set of
nameservers that only have IPv6 addresses.

Example

To enable this module, you need to add something like the following to
the Knot DNS configuration file:

zone:
 - domain: whoami.domain.example
 file: "/path/to/whoami.domain.example"
 module: mod-whoami

zone:
 - domain: whoami6.domain.example
 file: "/path/to/whoami6.domain.example"
 module: mod-whoami

The whoami.domain.example zone file example:

$TTL 1

@ SOA (
 whoami.domain.example. ; MNAME
 hostmaster.domain.example. ; RNAME
 2016051300 ; SERIAL
 86400 ; REFRESH
 86400 ; RETRY
 86400 ; EXPIRE
 1 ; MINIMUM
)

$TTL 86400

@ NS ns1.whoami.domain.example.
@ NS ns2.whoami.domain.example.
@ NS ns3.whoami.domain.example.
@ NS ns4.whoami.domain.example.

ns1 A 198.51.100.53
ns2 A 192.0.2.53
ns3 A 203.0.113.53
ns4 A 198.19.123.53

The whoami6.domain.example zone file example:

$TTL 1

@ SOA (
 whoami6.domain.example. ; MNAME
 hostmaster.domain.example. ; RNAME
 2016051300 ; SERIAL
 86400 ; REFRESH
 86400 ; RETRY
 86400 ; EXPIRE
 1 ; MINIMUM
)

$TTL 86400

@ NS ns1.whoami6.domain.example.
@ NS ns2.whoami6.domain.example.
@ NS ns3.whoami6.domain.example.
@ NS ns4.whoami6.domain.example.

ns1 AAAA 2001:db8:100::53
ns2 AAAA 2001:db8:200::53
ns3 AAAA 2001:db8:300::53
ns4 AAAA 2001:db8:400::53

The parent domain would then delegate whoami.domain.example to
ns[1-4].whoami.domain.example and whoami6.domain.example to
ns[1-4].whoami6.domain.example, and include the corresponding A-only or
AAAA-only glue records.

Note

This module is not configurable.

Utilities

Knot DNS comes with a few DNS client utilities and a few utilities to control
the server. This section collects manual pages for all provided binaries:

	knotd – Knot DNS server daemon

	knotc – Knot DNS control utility

	keymgr – Key management utility

	kjournalprint – Knot DNS journal print utility

	kcatalogprint – Knot DNS catalog print utility

	kzonecheck – Knot DNS zone file checking tool

	kzonesign – DNSSEC signing utility

	kdig – Advanced DNS lookup utility

	khost – Simple DNS lookup utility

	knsec3hash – NSEC hash computation utility

	knsupdate – Dynamic DNS update utility

	kxdpgun – DNS benchmarking tool

knotd – Knot DNS server daemon

Synopsis

knotd [config_option] [options]

Description

Knot DNS is a high-performance authoritative DNS server. The knotd program is
the DNS server daemon.

Config options

	-c, --config file
	Use a textual configuration file (default is @config_dir@/knot.conf).

	-C, --confdb directory
	Use a binary configuration database directory (default is @storage_dir@/confdb).
The default configuration database, if exists, has a preference to the default
configuration file.

Options

	-m, --max-conf-size MiB
	Set maximum size of the configuration database
(default is @conf_mapsize@ MiB, maximum 10000 MiB).

	-s, --socket path
	Use a remote control UNIX socket path (default is @run_dir@/knot.sock).

	-d, --daemonize [directory]
	Run the server as a daemon. New root directory may be specified
(default is /).

	-v, --verbose
	Enable debug output.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Signals

If the knotd process receives a SIGHUP signal, it reloads its configuration and
reopens the log files, if they are configured. When knotd receives a SIGUSR1
signal, it reloads all configured zones. Upon receiving a SIGINT signal, knotd
exits.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

See Also

knot.conf(5), knotc(8), keymgr(8),
kjournalprint(8).

knotc – Knot DNS control utility

Synopsis

knotc [config_option] [options] [action]

Description

This program controls a running knotd process using a socket.

If an action is specified, it is performed and knotc exits, otherwise the program
is executed in the interactive mode.

Config options

	-c, --config file
	Use a textual configuration file (default is @config_dir@/knot.conf).

	-C, --confdb directory
	Use a binary configuration database directory (default is @storage_dir@/confdb).
The default configuration database, if exists, has a preference to the default
configuration file.

Options

	-m, --max-conf-size MiB
	Set maximum size of the configuration database
(default is @conf_mapsize@ MiB, maximum 10000 MiB).

	-s, --socket path
	Use a control UNIX socket path (default is @run_dir@/knot.sock).

	-t, --timeout seconds
	Use a control timeout in seconds. Set to 0 for infinity (default is 60).
The control socket operations are also subject to the timeout
parameter set on the server side in server's Control configuration section.

	-b, --blocking
	Zone event trigger commands wait until the event is finished. Control timeout
is set to infinity if not forced by explicit timeout specification.

	-e, --extended
	Show extended output (even empty items in zone status).

	-f, --force
	Forced operation. Overrides some checks.

	-x, --mono
	Don't generate colorized output.

	-X, --color
	Force colorized output in extended output or to a pipe.

	-v, --verbose
	Enable debug output.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Actions

	status [detail]
	Check if the server is running. Details are version for the running
server version, workers for the numbers of worker threads,
configure for the configure summary, or cert-key for the
public key pin of the currently used certificate.

	stop
	Stop the server if running.

	reload
	Reload the server configuration and modified zone files, and reopen the log files
if they are configured. All open zone transactions will be aborted!

	stats [module[.counter]]
	Show global statistics counter(s). To print also counters with value 0, use
force option.

	zone-check [zone...]
	Test if the server can load the zone. Semantic checks are executed if enabled
in the configuration. If invoked with the force option, an error is returned
when semantic check warning appears. (*)

	zone-status [zone...] [filter]
	Show the zone status. Filters are +role, +serial, +transaction,
+events, +freeze, and +catalog. Empty zone parameters are omitted,
unless the --extended option is used. A single dash in the output represents
an unset value. Automatic colorization can be overruled using the --mono and
--color options.

The color code is:
green - zone acts as a master / red - zone acts as a slave,
bold font (highlited) - zone is active / normal - zone is empty,
underscored - zone is an interpreted catalog member.

	zone-reload [zone...]
	Trigger a zone reload from a disk without checking its modification time. For
secondary zone, the refresh event from primary server(s) is scheduled;
for primary zone, the notify event to secondary server(s) is scheduled. An open
zone transaction will be aborted! If invoked with the force option, also zone
modules will be re-loaded, but blocking mode might not work reliably. (#)

	zone-refresh [zone...]
	Trigger a check for the zone serial on the zone's primary server. If
the primary server has a newer zone, a transfer is scheduled. This command is
valid for secondary zones. (#)

	zone-retransfer [zone...]
	Trigger a zone transfer from the zone's primary server. The server
doesn't check the serial of the primary server's zone. This command is valid
for secondary zones. (#)

	zone-notify [zone...]
	Trigger a NOTIFY message to all configured remotes. This can help in cases
when previous NOTIFY had been lost or the secondary servers have been
offline. (#)

	zone-flush [zone...] [+outdir directory]
	Trigger a zone journal flush to the configured zone file. If an output
directory is specified, the current zone is immediately dumped (in the
blocking mode) to a zone file in the specified directory. See
Notes below about the directory permissions. (#)

	zone-backup [zone...] +backupdir directory [filter...]
	Trigger a zone data and metadata backup to a specified directory.
Available filters are +zonefile, +journal, +timers, +kaspdb,
+keysonly, +catalog, +quic, and their negative counterparts
+nozonefile, +nojournal, +notimers, +nokaspdb, +nokeysonly,
+nocatalog, and +noquic. With these filters set, zone contents,
zone's journal, zone-related timers, zone-related data in the KASP database
together with keys (or keys without the KASP database), zone's catalog,
and the server QUIC key and certificate, respectively, are backed up,
or omitted from the backup. By default, filters +zonefile, +timers,
+kaspdb, +catalog, +quic, +nojournal, and +nokeysonly
are set for backup. The same defaults are set for restore, with the only
difference being +noquic. Setting a filter for an item doesn't change the
default settings for other items. The only exception is +keysonly, which
disables all other filters by default, but they can still be turned on
explicitly. If zone flushing is disabled, the original zone file is backed
up instead of writing out zone contents to a file. When backing-up a catalog
zone, it is recommended to prevent ongoing changes to it by use of
zone-freeze. The force option allows an already existing backupdir to
be overwritten. See Notes below about the directory permissions.
(#)

	zone-restore [zone...] +backupdir directory [filter...]
	Trigger a zone data and metadata restore from a specified backup directory.
Optional filters are equivalent to the same filters of zone-backup.
Restore from backups created by Knot DNS releases prior to 3.1 is possible
with the force option. See Notes below about the directory
permissions. (#)

	zone-sign [zone...]
	Trigger a DNSSEC re-sign of the zone. Existing signatures will be dropped.
This command is valid for zones with DNSSEC signing enabled. (#)

	zone-validate [zone...]
	Trigger a DNSSEC validation of the zone. If the validation fails and the
zone is secondary, the zone expires immediately! (#)

	zone-keys-load [zone...]
	Trigger a load of DNSSEC keys and other signing material from KASP database
(which might have been altered manually). If suitable, re-sign the zone
afterwards (keeping valid signatures intact). (#)

	zone-key-rollover zone key_type
	Trigger immediate key rollover. Publish new key and start a key rollover,
even when the key has a lifetime to go. Key type can be ksk (also for CSK)
or zsk. This command is valid for zones with DNSSEC signing and automatic
key management enabled. Note that complete key rollover consists of several steps
and the blocking mode relates to the initial one only! (#)

	zone-ksk-submitted zone...
	Use when the zone's KSK rollover is in submission phase. By calling this command
the user confirms manually that the parent zone contains DS record for the new
KSK in submission phase and the old KSK can be retired. (#)

	zone-freeze [zone...]
	Trigger a zone freeze. All running events will be finished and all new and pending
(planned) zone-changing events (load, refresh, update, flush, and DNSSEC signing)
will be held up until the zone is thawed. Up to 8 (this limit is hardcoded) DDNS
updates per zone will be queued, subsequent updates will be refused. (#)

	zone-thaw [zone...]
	Trigger dismissal of zone freeze. (#)

	zone-xfr-freeze [zone...]
	Temporarily disable outgoing AXFR/IXFR for the zone(s). (#)

	zone-xfr-thaw [zone...]
	Dismiss outgoing XFR freeze. (#)

	zone-read zone [owner [type]]
	Get zone data that are currently being presented.

	zone-begin zone... [+benevolent]
	Begin a zone transaction. If +benevolent is used, the zone transaction will
be committed even when it contains removals of non-existing or additions of
existing records.

	zone-commit zone...
	Commit the zone transaction. All changes are applied to the zone.

	zone-abort zone...
	Abort the zone transaction. All changes are discarded.

	zone-diff zone
	Get zone changes within the transaction.

	zone-get zone [owner [type]]
	Get zone data within the transaction.

	zone-set zone owner [ttl] type rdata
	Add zone record within the transaction. The first record in a rrset
requires a ttl value specified.

	zone-unset zone owner [type [rdata]]
	Remove zone data within the transaction.

	zone-purge zone... [+orphan] [filter...]
	Purge zone data, zone file, journal, timers, and/or KASP data of specified zones.
Available filters are +expire, +zonefile, +journal, +timers,
+kaspdb, and +catalog. If no filter is specified, all filters are enabled.
If the zone is no longer configured, add +orphan parameter (zone file cannot
be purged in this case). When purging orphans, always check the server log for
possible errors. For proper operation, it's necessary to prevent ongoing changes
to the zone and triggering of zone related events during purge; use of
zone-freeze is advisable. This command always requires the force option. (#)

	zone-stats zone [module[.counter]]
	Show zone statistics counter(s). To print also counters with value 0, use
force option.

	conf-init
	Initialize the configuration database. If the database doesn't exist yet,
execute this command as an intended user to ensure the server is permitted
to access the database (e.g. sudo -u knot knotc conf-init). (*)

	conf-check
	Check the server configuration. (*)

	conf-import filename [+nopurge]
	Import a configuration file into the configuration database. If the database
doesn't exist yet, execute this command as an intended user to ensure the server
is permitted to access the database (e.g. sudo -u knot knotc conf-import ...).
An optional filter +nopurge prevents possibly existing configuration
database from purging before the import itself.
Also ensure the server is not using the configuration database at the same time! (*)

	conf-export [filename] [+schema]
	Export the configuration database (or JSON schema) into a file or stdout. (*)

	conf-list [item]
	List the configuration database sections or section items.

	conf-read [item]
	Read the item from the active configuration database.

	conf-begin
	Begin a writing configuration database transaction. Only one transaction
can be opened at a time.

	conf-commit
	Commit the configuration database transaction.

	conf-abort
	Rollback the configuration database transaction.

	conf-diff [item]
	Get the item difference in the transaction.

	conf-get [item]
	Get the item data from the transaction.

	conf-set item [data...]
	Set the item data in the transaction.

	conf-unset [item] [data...]
	Unset the item data in the transaction.

Notes

Empty or -- zone parameter means all zones or all zones with a transaction.

Use @ owner to denote the zone name.

Type item parameter in the form of section[[id]][.name].

(*) indicates a local operation which requires a configuration.

(#) indicates an optionally blocking operation.

The -b and -f options can be placed right after the command name.

Responses returned by knotc commands depend on the mode:

	In the blocking mode, knotc reports if an error occurred during processing
of the command by the server. If an error is reported, a more detailed information
about the failure can usually be found in the server log.

	In the non-blocking (default) mode, knotc doesn't report processing errors.
The OK response to triggering commands means that the command has been successfully
sent to the server. To verify if the operation succeeded, it's necessary to
check the server log.

Actions zone-flush, zone-backup, and zone-restore are carried out by
the knotd process. The directory specified must be accessible to the user account
that knotd runs under and if the directory already exists, its permissions must be
appropriate for that user account.

Interactive mode

The utility provides interactive mode with basic line editing functionality,
command completion, and command history.

Interactive mode behavior can be customized in ~/.editrc. Refer to
editrc(5) for details.

Command history is saved in ~/.knotc_history.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

Reload the whole server configuration

$ knotc reload

Flush the example.com and example.org zones

$ knotc zone-flush example.com example.org

Get the current server configuration

$ knotc conf-read server

Get the list of the current zones

$ knotc conf-read zone.domain

Get the primary servers for the example.com zone

$ knotc conf-read 'zone[example.com].master'

Add example.org zone with a zonefile location

$ knotc conf-begin
$ knotc conf-set 'zone[example.org]'
$ knotc conf-set 'zone[example.org].file' '/var/zones/example.org.zone'
$ knotc conf-commit

Get the SOA record for each configured zone

$ knotc zone-read -- @ SOA

See Also

knotd(8), knot.conf(5), editrc(5).

keymgr – Key management utility

Synopsis

keymgr [config_option] [options] zone_name command

keymgr [config_option] [options] keystore_id command

keymgr [config_option] [-j] -l

keymgr -t parameter...

Description

The keymgr utility serves for manual key management in Knot DNS server.

Functions for DNSSEC keys and KASP (Key And Signature Policy)
management are provided.

The DNSSEC and KASP configuration is stored in a so called KASP database.
The database is backed by LMDB.

Parameters

	zone_name
	Name of the zone the command is executed for.

Config options

	-c, --config file
	Use a textual configuration file (default is @config_dir@/knot.conf).

	-C, --confdb directory
	Use a binary configuration database directory (default is @storage_dir@/confdb).
The default configuration database, if exists, has a preference to the default
configuration file.

	-D, --dir path
	Use specified KASP database path and default configuration.

Options

	-t, --tsig tsig_name [tsig_algorithm [tsig_bits]]
	Generates a TSIG key for the given name. Optionally the key algorithm can
be specified by its name (default: hmac-sha256) and
a bit length of the key (default: optimal length given by algorithm).
The generated TSIG key is only displayed on stdout:
the command does not create a file, nor include the key in a keystore.

	-e, --extended
	Extended output (listing of keys with full description).

	-j, --json
	Print the zones or keys in JSON format.

	-l, --list
	Print the list of zones that have at least one key stored in the configured KASP
database.

	-x, --mono
	Don't generate colorized output.

	-X, --color
	Force colorized output in the normal mode.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Note

Keymgr runs with the same user privileges as configured for knotd.
For example, if keymgr is run as root, but the configured user
is knot, it won't be able to read files (PEM files, KASP database, ...) readable
only by root.

Commands

	list [timestamp_format]
	Prints the list of key IDs and parameters of keys belonging to the zone.

	generate [arguments...]
	Generates new DNSSEC key and stores it in KASP database. Prints the key ID.
This action takes some number of arguments (see below). Values for unspecified arguments are taken
from corresponding policy (if -c or -C options used) or from Knot policy defaults.

	import-bind BIND_key_file
	Imports a BIND-style key into KASP database (converting it to PEM format).
Takes one argument: path to BIND key file (private or public, but both MUST exist).

	import-pub BIND_pubkey_file
	Imports a public key into KASP database. This key won't be rolled over nor used for signing.
Takes one argument: path to BIND public key file.

	import-pem PEM_file [arguments...]
	Imports a DNSSEC key from PEM file. The key parameters (same as for the generate action) need to be
specified (mainly algorithm, timers...) because they are not contained in the PEM format.

	import-pkcs11 key_id [arguments...]
	Imports a DNSSEC key from PKCS #11 storage. The key parameters (same as for the generate action) need to be
specified (mainly algorithm, timers...) because they are not available. In fact, no key
data is imported, only KASP database metadata is created.

	nsec3-salt [new_salt]
	Prints the current NSEC3 salt used for signing. If new_salt is specified, the salt is overwritten.
The salt is printed and expected in hexadecimal, or dash if empty.

	local-serial [new_serial]
	Print SOA serial stored in KASP database when using on-secondary DNSSEC signing.
If new_serial is specified, the serial is overwritten. After updating the serial, expire the zone
(zone-purge +expire +zonefile +journal) if the server is running, or remove corresponding zone file
and journal contents if the server is stopped.

	master-serial [new_serial]
	Print SOA serial of the remote master stored in KASP database when using on-secondary DNSSEC signing.
If new_serial is specified, the serial is overwritten (not recommended).

	set key_spec [arguments...]
	Changes a timing argument (or ksk/zsk) of an existing key to a new value. Key_spec is either the
key tag or a prefix of the key ID, with an optional [id=|keytag=] prefix; arguments
are like for generate, but just the related ones.

	ds [key_spec]
	Generate DS record (all digest algorithms together) for specified key. Key_spec
is like for set, if unspecified, all KSKs are used.

	dnskey [key_spec]
	Generate DNSKEY record for specified key. Key_spec
is like for ds, if unspecified, all KSKs are used.

	delete key_spec
	Remove the specified key from zone. If the key was not shared, it is also deleted from keystore.

	share key_ID zone_from
	Import a key (specified by full key ID) from another zone as shared. After this, the key is
owned by both zones equally.

Keystore commands

	keystore-test
	Conduct some tests on the specified keystore. For each algorithm, key generation,
import, removal, and use (signing and verification) are tested.
Use a configured keystore_id or - for the default.

	keystore-bench [num_threads]
	Conduct a signing benchmark on the specified keystore.
Random blocks of data are signed by the selected number of threads
(default is 1) in a loop, and the average number of signing operations per
second for each algorithm is returned.
Use a configured keystore_id or - for the default.

Commands related to Offline KSK feature

	pregenerate [timestamp-from] timestamp-to
	Pre-generate ZSKs for use with offline KSK, for the specified period starting from now or specified time.
This function also applies to non-offline KSK keys.

	show-offline [timestamp-from] [timestamp-to]
	Print pre-generated offline key-related records for specified time interval. If timestamp_to
is omitted, it will be to infinity. If timestamp-from is omitted, it will start from the
beginning.

	del-offline timestamp-from timestamp-to
	Delete pre-generated offline key-related records in specified time interval.

	del-all-old
	Delete old keys that are in state 'removed'. This function also applies to
non-offline KSK keys.

	generate-ksr [timestamp-from] timestamp-to
	Print to stdout KeySigningRequest based on pre-generated ZSKs for specified time period.
If timestamp-from is omitted, timestamp of the last offline records set is used
or now if no records available.

	sign-ksr ksr_file
	Read KeySigningRequest from a text file, sign it using local keyset and print SignedKeyResponse to stdout.

	validate-skr skr_file
	Read SignedKeyResponse from a text file and validate the RRSIGs in it if not corrupt.

	import-skr skr_file
	Read SignedKeyResponse from a text file and import the signatures for later use in zone. If some
signatures have already been imported, they will be deleted for the period from beginning of the SKR
to infinity.

Generate arguments

Arguments are separated by space, each of them is in format 'name=value'.

	algorithm
	Either an algorithm number (e.g. 14) or algorithm name
without dashes (e.g. ECDSAP384SHA384).

	size
	Key length in bits.

	ksk
	If set to yes, the key will be used for signing DNSKEY rrset. The generated key will also
have the Secure Entry Point flag set to 1.

	zsk
	If set to yes, the key will be used for signing zone (except DNSKEY rrset). This flag can
be set concurrently with the ksk flag (for a CSK key).

	sep
	Overrides the standard setting of the Secure Entry Point flag.

The following arguments are timestamps of key lifetime (see DNSSEC key states):

	pre_active
	Key started to be used for signing, not published (only for algorithm rollover).

	publish
	Key published.

	ready
	Key is waiting for submission (only for KSK).

	active
	Key used for signing.

	retire_active
	Key still used for signing, but another key is active (only for KSK or algorithm rollover).

	retire
	Key still published (only if ZSK), but no longer used for signing.

	post_active
	Key no longer published, but still used for signing (only for algorithm rollover).

	revoke
	Key revoked according to RFC 5011 [https://datatracker.ietf.org/doc/html/rfc5011.html] trust anchor roll-over.

	remove
	Key deleted.

Timestamps

	0
	Zero timestamp means infinite future.

	UNIX_time
	Positive number of seconds since 1970 UTC.

	YYYYMMDDHHMMSS
	Date and time in this format without any punctuation.

	relative_timestamp
	A sign character (+, -), a number, and an optional time unit
(y, mo, d, h, mi, s). The default unit is one second.
E.g. +1mi, -2mo.

Output timestamp formats

	(none)
	The timestamps are printed as UNIX timestamp.

	human
	The timestamps are printed relatively to now using time units (e.g. -2y5mo, +1h13s).

	iso
	The timestamps are printed in the ISO8601 format (e.g. 2016-12-31T23:59:00).

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

	Generate new TSIG key:

$ keymgr -t my_name hmac-sha384

	Generate new DNSSEC key:

$ keymgr example.com. generate algorithm=ECDSAP256SHA256 size=256 \
 ksk=true created=1488034625 publish=20170223205611 retire=+10mo remove=+1y

	Import a DNSSEC key from BIND:

$ keymgr example.com. import-bind ~/bind/Kharbinge4d5.+007+63089.key

	Import a CSK DNSSEC key from a PEM file:

$ keymgr example.com. import-pem 085d3890e8c22d854586678d9263933f2d02d795.pem ksk=yes zsk=yes

	Configure key timing:

$ keymgr example.com. set 4208 active=+2mi retire=+4mi remove=+5mi

	Share a KSK from another zone:

$ keymgr example.com. share e687cf927029e9db7184d2ece6d663f5d1e5b0e9 another-zone.com.

See Also

RFC 6781 [https://datatracker.ietf.org/doc/html/rfc6781.html] - DNSSEC Operational Practices.
RFC 7583 [https://datatracker.ietf.org/doc/html/rfc7583.html] - DNSSEC Key Rollover Timing Considerations.

knot.conf(5),
knotc(8),
knotd(8).

kjournalprint – Knot DNS journal print utility

Synopsis

kjournalprint [config_option] [options] zone_name

kjournalprint [config_option] -z

Description

The program prints zone history stored in a journal database. As default,
changes are colored for terminal.

Parameters

	zone_name
	A name of the zone to print the history for.

Config options

	-c, --config file
	Use a textual configuration file (default is @config_dir@/knot.conf).

	-C, --confdb directory
	Use a binary configuration database directory (default is @storage_dir@/confdb).
The default configuration database, if exists, has a preference to the default
configuration file.

	-D, --dir path
	Use specified journal database path and default configuration.

Options

	-z, --zone-list
	Instead of reading the journal, display the list of zones in the DB.

	-l, --limit limit
	Limits the number of displayed changes.

	-s, --serial soa
	Start at a specific SOA serial.

	-M, --merge
	Print the changesets merged into one changeset. If zone-in-journal is present,
the stored contents with all the changesets applied will be printed.

	-H, --check
	Enable additional journal semantic checks during printing.

	-d, --debug
	Debug mode brief output.

	-x, --mono
	Don't generate colorized output.

	-X, --color
	Force colorized output.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

Last (most recent) 5 changes without colors:

$ kjournalprint -nl 5 /var/lib/knot/journal example.com.

See Also

knotd(8), knot.conf(5).

kcatalogprint – Knot DNS catalog print utility

Synopsis

kcatalogprint [config_option] [options]

Description

The program prints zone catalog stored in a catalog database.

Config options

	-c, --config file
	Use a textual configuration file (default is @config_dir@/knot.conf).

	-C, --confdb directory
	Use a binary configuration database directory (default is @storage_dir@/confdb).
The default configuration database, if exists, has a preference to the default
configuration file.

	-D, --dir path
	Use specified catalog database path and default configuration.

Options

	-a, --catalog
	Filter the output by catalog zone name.

	-m, --member
	Filter the output by member zone name.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

See Also

knotd(8), knot.conf(5).

kzonecheck – Knot DNS zone file checking tool

Synopsis

kzonecheck [options] filename

Description

The utility checks zone file syntax and runs semantic checks on the zone
content. The executed checks are the same as the checks run by the Knot
DNS server.

Please, refer to the semantic-checks configuration option in
knot.conf(5) for the full list of available semantic checks.

Parameters

	filename
	Path to the zone file to be checked. For reading from stdin use /dev/stdin
or just -.

Options

	-o, --origin origin
	Zone origin. If not specified, the origin is determined from the file name
(possibly removing the .zone suffix).

	-d, --dnssec on|off
	Also check DNSSEC-related records. The default is to decide based on the
existence of a RRSIG for SOA.

	-z, --zonemd
	Also check the zone hash against a ZONEMD record, which is required to exist.

	-t, --time time
	Current time specification. Use UNIX timestamp, YYYYMMDDHHmmSS
format, or [+/-]time[unit] format, where unit can be Y, M,
D, h, m, or s. Default is current UNIX timestamp.

	-p, --print
	Print the zone on stdout.

	-v, --verbose
	Enable debug output.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

See Also

knotd(8), knot.conf(5).

kzonesign – DNSSEC signing utility

Synopsis

kzonesign [config_option] [options] zone_name

Description

This utility reads the zone's zone file, signs the zone according to given
configuration, and writes the signed zone file back. An alternative mode
is DNSSEC validation of the given zone. The signing or validation
can run in parallel if enabled in the configuration (see policy.signing-threads
and zone.adjust-threads).

Parameters

	zone_name
	A name of the zone to be signed.

Config options

	-c, --config file
	Use a textual configuration file (default is @config_dir@/knot.conf).

	-C, --confdb directory
	Use a binary configuration database directory (default is @storage_dir@/confdb).
The default configuration database, if exists, has a preference to the default
configuration file.

Options

	-o, --outdir dir_name
	Write the output zone file to the specified directory instead of the configured one.

	-r, --rollover
	Allow key roll-overs and NSEC3 re-salt. In order to finish possible KSK submission,
set the KSK's active timestamp to now (+0) using keymgr.

	-v, --verify
	Instead of (re-)signing the zone, just verify that the zone is correctly signed.

	-t, --time timestamp
	Sign/verify the zone (and roll the keys if necessary) as if it was at the time
specified by timestamp.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

See Also

knot.conf(5), keymgr(8).

kdig – Advanced DNS lookup utility

Synopsis

kdig [common-settings] [query [settings]]...

kdig -h

Description

This utility sends one or more DNS queries to a nameserver. Each query can have
individual settings, or it can be specified globally via common-settings,
which must precede query specification.

Parameters

	query
	name | -q name | -x address | -G tapfile

	common-settings, settings
	[query_class] [query_type] [@server]... [options]

	name
	Is a domain name that is to be looked up.

	server
	Is a domain name or an IPv4 or IPv6 address of the nameserver to send a query
to. An additional port can be specified using address:port ([address]:port
for IPv6 address), address@port, or address#port notation. A value which begins
with '/' character is considered an absolute UNIX socket path. If no server is
specified, the servers from /etc/resolv.conf are used.

If no arguments are provided, kdig sends NS query for the root
zone.

Query classes

A query_class can be either a DNS class name (IN, CH) or generic class
specification CLASSXXXXX where XXXXX is a corresponding decimal
class number. The default query class is IN.

Query types

A query_type can be either a DNS resource record type
(A, AAAA, NS, SOA, DNSKEY, ANY, etc.) or one of the following:

	TYPEXXXXX
	Generic query type specification where XXXXX is a corresponding decimal
type number.

	AXFR
	Full zone transfer request.

	IXFR=serial
	Incremental zone transfer request for specified SOA serial number
(i.e. all zone updates since the specified zone version are to be returned).

	NOTIFY=serial
	Notify message with a SOA serial hint specified.

	NOTIFY
	Notify message with a SOA serial hint unspecified.

The default query type is A.

Options

	-4
	Use the IPv4 protocol only.

	-6
	Use the IPv6 protocol only.

	-b address
	Set the source IP address of the query to address. The address must be a
valid address for local interface or :: or 0.0.0.0. An optional port
can be specified in the same format as the server value.

	-c class
	An explicit query_class specification. See possible values above.

	-d
	Enable debug messages.

	-h, --help
	Print the program help.

	-k keyfile
	Use the TSIG key stored in a file keyfile to authenticate the request. The
file must contain the key in the same format as accepted by the
-y option.

	-p port
	Set the nameserver port number or service name to send a query to. The default
port is 53.

	-q name
	Set the query name. An explicit variant of name specification. If no name
is provided, empty question section is set.

	-t type
	An explicit query_type specification. See possible values above.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

	-x address
	Send a reverse (PTR) query for IPv4 or IPv6 address. The correct name, class
and type is set automatically.

	-y [alg:]name:key
	Use the TSIG key named name to authenticate the request. The alg
part specifies the algorithm (the default is hmac-sha256) and key specifies
the shared secret encoded in Base64.

	-E tapfile
	Export a dnstap trace of the query and response messages received to the
file tapfile.

	-G tapfile
	Generate message output from a previously saved dnstap file tapfile.

	+[no]multiline
	Wrap long records to more lines and improve human readability.

	+[no]short
	Show record data only.

	+[no]generic
	Use the generic representation format when printing resource record types
and data.

	+[no]crypto
	Display the DNSSEC keys and signatures values in base64, instead of omitting them.

	+[no]aaflag
	Set the AA flag.

	+[no]tcflag
	Set the TC flag.

	+[no]rdflag
	Set the RD flag.

	+[no]recurse
	Same as +[no]rdflag

	+[no]raflag
	Set the RA flag.

	+[no]zflag
	Set the zero flag bit.

	+[no]adflag
	Set the AD flag.

	+[no]cdflag
	Set the CD flag.

	+[no]dnssec
	Set the DO flag.

	+[no]all
	Show all packet sections.

	+[no]qr
	Show the query packet.

	+[no]header
	Show the packet header.

	+[no]comments
	Show commented section names.

	+[no]opt
	Show the EDNS pseudosection.

	+[no]opttext
	Try to show unknown EDNS options as text.

	+[no]optpresent
	Show EDNS in presentation format according to the specification in version
draft-peltan-edns-presentation-format-01 [https://www.ietf.org/archive/id/draft-peltan-edns-presentation-format-01.html].

	+[no]question
	Show the question section.

	+[no]answer
	Show the answer section.

	+[no]authority
	Show the authority section.

	+[no]additional
	Show the additional section.

	+[no]tsig
	Show the TSIG pseudosection.

	+[no]stats
	Show trailing packet statistics.

	+[no]class
	Show the DNS class.

	+[no]ttl
	Show the TTL value.

	+[no]tcp
	Use the TCP protocol (default is UDP for standard query and TCP for AXFR/IXFR).

	+[no]fastopen
	Use TCP Fast Open.

	+[no]ignore
	Don't use TCP automatically if a truncated reply is received.

	+[no]keepopen
	Keep TCP connection open for the following query if it has the same connection
configuration. This applies to +tcp, +tls, and +https operations. The connection
is considered in the context of a single kdig call only.

	+[no]tls
	Use TLS with the Opportunistic privacy profile (RFC 7858#section-4.1 [https://datatracker.ietf.org/doc/html/rfc7858.html#section-4.1]).

	+[no]tls-ca[=FILE]
	Use TLS with a certificate validation. Certification authority certificates
are loaded from the specified PEM file (default is system certificate storage
if no argument is provided).
Can be specified multiple times. If the +tls-hostname option is not provided,
the name of the target server (if specified) is used for strict authentication.

	+[no]tls-pin=BASE64
	Use TLS with the Out-of-Band key-pinned privacy profile (RFC 7858#section-4.2 [https://datatracker.ietf.org/doc/html/rfc7858.html#section-4.2]).
The PIN must be a Base64 encoded SHA-256 hash of the X.509 SubjectPublicKeyInfo.
Can be specified multiple times.

	+[no]tls-hostname=STR
	Use TLS with a remote server hostname check.

	+[no]tls-sni=STR
	Use TLS with a Server Name Indication.

	+[no]tls-keyfile=FILE
	Use TLS with a client keyfile.

	+[no]tls-certfile=FILE
	Use TLS with a client certfile.

	+[no]tls-ocsp-stapling[=H]
	Use TLS with a valid stapled OCSP response for the server certificate
(%u or specify hours). OCSP responses older than the specified period are
considered invalid.

	+[no]https[=URL]
	Use HTTPS (DNS-over-HTTPS) in wire format (RFC 1035#section-4.2.1 [https://datatracker.ietf.org/doc/html/rfc1035.html#section-4.2.1]).
It is also possible to specify URL=[authority][/path] where request
will be sent to. Any leading scheme and authority indicator (i.e. //) are ignored.
Authority might also be specified as the server (using the parameter @).
If path is specified and authority is missing, then the server
is used as authority together with the specified path.
Library libnghttp2 is required.

	+[no]https-get
	Use HTTPS with HTTP/GET method instead of the default HTTP/POST method.
Library libnghttp2 is required.

	+[no]quic
	Use QUIC (DNS-over-QUIC).

	+[no]nsid
	Request the nameserver identifier (NSID).

	+[no]bufsize=B
	Set EDNS buffer size in bytes (default is 1232 bytes).

	+[no]padding[=B]
	Use EDNS(0) padding option to pad queries, optionally to a specific
size. The default is to pad queries with a sensible amount when using
+tls, and not to pad at all when queries are sent without TLS. With
no argument (i.e., just +padding) pad every query with a sensible
amount regardless of the use of TLS. With +nopadding, never pad.

	+[no]alignment[=B]
	Align the query to B-byte-block message using the EDNS(0) padding option
(default is no or 128 if no argument is specified).

	+[no]subnet=SUBN
	Set EDNS(0) client subnet SUBN=addr/prefix.

	+[no]edns[=N]
	Use EDNS version (default is 0). EDNS(0) is enabled by default.

	+[no]timeout=T
	Set the wait-for-reply interval in seconds (default is 5 seconds). This timeout
applies to each query attempt. Zero value or notimeout is interpreted as
infinity.

	+[no]retry=N
	Set the number (>=0) of UDP retries (default is 2). This doesn't apply to
AXFR/IXFR.

	+[no]expire
	Sets the EXPIRE EDNS option.

	+[no]cookie[=HEX]
	Attach EDNS(0) cookie to the query.

	+[no]badcookie
	Repeat a query with the correct cookie.

	+[no]ednsopt[=CODE[:HEX]]
	Send custom EDNS option. The CODE is EDNS option code in decimal, HEX
is an optional hex encoded string to use as EDNS option value. This argument
can be used multiple times. +noednsopt clears all EDNS options specified by
+ednsopt.

	+[no]proxy=SRC_ADDR[#SRC_PORT]-DST_ADDR[#DST_PORT]
	Add PROXYv2 header with the specified source and destination addresses to the query.
The default source port is 0 and destination port 53.

	+[no]json
	Use JSON for output encoding (RFC 8427).

	+noidn
	Disable the IDN transformation to ASCII and vice versa. IDN support depends
on libidn2 availability during project building! If used in common-settings,
all IDN transformations are disabled. If used in the individual query settings,
transformation from ASCII is disabled on output for the particular query. Note
that IDN transformation does not preserve domain name letter case.

Notes

Options -k and -y can not be used simultaneously.

Dnssec-keygen keyfile format is not supported. Use keymgr(8) instead.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

	Get A records for example.com:

$ kdig example.com A

	Perform AXFR for zone example.com from the server 192.0.2.1:

$ kdig example.com -t AXFR @192.0.2.1

	Get A records for example.com from 192.0.2.1 and reverse lookup for address
2001:DB8::1 from 192.0.2.2. Both using the TCP protocol:

$ kdig +tcp example.com -t A @192.0.2.1 -x 2001:DB8::1 @192.0.2.2

	Get SOA record for example.com, use TLS, use system certificates, check
for specified hostname, check for certificate pin, and print additional
debug info:

$ kdig -d @185.49.141.38 +tls-ca +tls-host=getdnsapi.net \
 +tls-pin=foxZRnIh9gZpWnl+zEiKa0EJ2rdCGroMWm02gaxSc9S= soa example.com

	DNS over HTTPS examples (various DoH implementations):

$ kdig @1.1.1.1 +https example.com.
$ kdig @193.17.47.1 +https=/doh example.com.
$ kdig @8.8.4.4 +https +https-get example.com.
$ kdig @8.8.8.8 +https +tls-hostname=dns.google +fastopen example.com.

	More queries share one DoT connection:

$ kdig @1.1.1.1 +tls +keepopen abc.example.com A mail.example.com AAAA

Files

/etc/resolv.conf

See Also

khost(1), knsupdate(1), keymgr(8).

khost – Simple DNS lookup utility

Synopsis

khost [options] name [server]

Description

This utility sends a DNS query for the name to the server and prints a reply
in more user-readable form. For more advanced DNS queries use kdig
instead.

Parameters

	name
	Is a domain name that is to be looked up. If the name is IPv4 or IPv6
address the PTR query type is used.

	server
	Is a name or an address of the nameserver to send a query to. The address
can be specified using [address]:port notation. If no server is specified,
the servers from /etc/resolv.conf are used.

If no arguments are provided, khost prints a short help.

Options

	-4
	Use the IPv4 protocol only.

	-6
	Use the IPv6 protocol only.

	-a
	Send ANY query with verbose mode.

	-d
	Enable debug messages.

	-h, --help
	Print the program help.

	-r
	Disable recursion.

	-T
	Use the TCP protocol.

	-v
	Enable verbose output.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

	-w
	Wait forever for the reply.

	-c class
	Set the query class (e.g. CH, CLASS4). The default class is IN.

	-t type
	Set the query type (e.g. NS, IXFR=12345, TYPE65535). The default is to send 3
queries (A, AAAA and MX).

	-R retries
	The number (>=0) of UDP retries to query a nameserver. The default is 1.

	-W wait
	The time to wait for a reply in seconds. This timeout applies to each query
try. The default is 2 seconds.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

	Get the A, AAAA and MX records for example.com:

$ khost example.com

	Get the reverse record for address 192.0.2.1:

$ khost 192.0.2.1

	Perform a verbose zone transfer for zone example.com:

$ khost -t AXFR -v example.com

Files

/etc/resolv.conf

See Also

kdig(1), knsupdate(1).

knsec3hash – NSEC hash computation utility

Synopsis

knsec3hash salt algorithm iterations name

knsec3hash algorithm flags iterations salt name

knsec3hash [-h] [-V]

Description

This utility generates a NSEC3 hash for a given domain name and parameters of NSEC3 hash.

Parameters

	salt
	Specifies a binary salt encoded as a hexadecimal string.

	algorithm
	Specifies a hashing algorithm by number. Currently, the only supported algorithm is SHA-1 (number 1).

	iterations
	Specifies the number of additional iterations of the hashing algorithm.

	name
	Specifies the domain name to be hashed.

	flags
	Specifies NSEC3 flags as an unsigned integer.

Options

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

$ knsec3hash 1 0 10 c01dcafe knot-dns.cz
7PTVGE7QV67EM61ROS9238P5RAKR2DM7 (salt=c01dcafe, hash=1, iterations=10)

$ knsec3hash - 1 0 net
A1RT98BS5QGC9NFI51S9HCI47ULJG6JH (salt=-, hash=1, iterations=0)

See Also

RFC 5155 [https://datatracker.ietf.org/doc/html/rfc5155.html] – DNS Security (DNSSEC) Hashed Authenticated Denial of Existence.

knotc(8), knotd(8).

knsupdate – Dynamic DNS update utility

Synopsis

knsupdate [-v] [options] [filename]

knsupdate [-q] [quic_options] [options] [filename]

Description

This utility sends Dynamic DNS update messages to a DNS server. Update content
is read from a file (if the parameter filename is given) or from the standard
input.

The format of updates is textual and is made up of commands. Every command is
placed on the separate line of the input. Lines starting with a semicolon are
comments and are not processed.

Parameters

	filename
	Path to the file with knsupdate commands.

Options

	-T, --tcp
	Use a TCP connection. (-v can be used for compatibility with nsupdate).

	-S, --tls
	Use a TLS connection.

	-Q, --quic
	Use a QUIC connection.

	-p, --port number
	Set the port to use for connections to the server (if not explicitly specified
in the update). The default is 53 for UDP/TCP or 853 for QUIC.

	-r, --retry count
	The number of retries for UDP requests. The default is 3.

	-t, --timeout seconds
	The total timeout (for all UDP update tries) of the update request in seconds.
The default is 12. If set to zero, the timeout is infinite.

	-y, --tsig [alg:]name:key
	Use the TSIG key with a name name to authenticate the request. The alg
part specifies the algorithm (the default is hmac-sha256) and key specifies
the shared secret encoded in Base64.

	-k, --tsigfile path
	Use the TSIG key stored in a file keyfile to authenticate the request. The
file should contain the key in the same format, which is accepted by the
-y option.

	-d, --debug
	Enable debug messages.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

QUIC/TLS options

	-H, --hostname string
	Enable remote server hostname validation.

	-P, --pin base64
	Use Out-of-Band key-pinned privacy profile
(RFC 7858#section-4.2). The PIN must be a Base64 encoded SHA-256 hash of the
X.509 SubjectPublicKeyInfo. Can be specified multiple times.

	-A, --ca [path]
	Enable certificate validation. Certification authority certificates
are loaded from the specified PEM file (default is system certificate storage
if no argument is provided). Can be specified multiple times.

	-E, --certfile path
	Path to a client certificate file.

	-K, --keyfile path
	Path to a client key file.

	-s, --sni string
	Use specified Server Name Indication.

Commands

	server name [port]
	Specifies a receiving server of the dynamic update message. The name parameter
can be either a host name or an IP address. If the port is not specified,
the default port is used. The default port value can be controlled using
the -p program option.

	local address [port]
	Specifies outgoing address and port. If no local is specified, the
address and port are set by the system automatically. The default port number
is 0.

	zone name
	Specifies that all updates are done within a zone name. The zone name doesn't
have a default and must be set explicitly.

	origin name
	Specifies fully qualified domain name suffix which is appended to non-fqd
owners in update commands. The default is the terminal label (.).

	class name
	Sets name as the default class for all updates. If not used, the default
class is IN.

	ttl value
	Sets value as the default TTL (in seconds). If not used, the default value
is 3600.

	key [alg:]name key
	Specifies the TSIG key named name to authenticate the request. An optional
alg algorithm can be specified. This command has the same effect as
the program option -y.

	[prereq] nxdomain name
	Adds a prerequisite for a non-existing record owned by name.

	[prereq] yxdomain name
	Adds a prerequisite for an existing record owned by name.

	[prereq] nxrrset name [class] type
	Adds a prerequisite for a non-existing record of the type owned by name.
Internet class is expected.

	[prereq] yxrrset name [class] type [data]
	Adds a prerequisite for an existing record of the type owned by name
with optional data. Internet class is expected.

	[update] add name [ttl] [class] type data
	Adds a request to add a new resource record into the zone.
Please note that if the name is not fully qualified domain name, the
current origin name is appended to it.

	[update] del[ete] name [ttl] [class] [type] [data]
	Adds a request to remove all (or matching class, type or data)
resource records from the zone. There is the same requirement for the name
parameter as in update add command. The ttl item is ignored.

	show
	Displays current content of the update message.

	send
	Sends the current update message and cleans the list of updates.

	answer
	Displays the last answer from the server.

	debug
	Enable debugging. This command has the same meaning as the -d program option.

	exit
	End the program.

Notes

Options -k and -y can not be used simultaneously.

Neither tsig-keygen(8) nor dnssec-keygen(1) keyfile formats are supported.
Use keymgr(8) to construct a string for -y or the file passed to -k.

Zone name/server guessing is not supported if the zone name/server is not specified.

An empty line doesn't send the update.

Interactive mode

The utility provides interactive mode with basic line editing functionality,
command completion, and command history.

Interactive mode behavior can be customized in ~/.editrc. Refer to
editrc(5) for details.

Command history is saved in ~/.knsupdate_history.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

	Send one update of the zone example.com to the server 192.168.1.1. The update
contains two new records:

$ knsupdate
knsupdate> server 192.168.1.1
knsupdate> zone example.com.
knsupdate> origin example.com.
knsupdate> ttl 3600
knsupdate> add test1.example.com. 7200 A 192.168.2.2
knsupdate> add test2 TXT "hello"
knsupdate> show
knsupdate> send
knsupdate> answer
knsupdate> exit

See Also

kdig(1), khost(1), keymgr(8), editrc(5).

kxdpgun – DNS benchmarking tool

Synopsis

kxdpgun [options] -i filename target

Description

Powerful generator of DNS traffic, sending and receiving packets through XDP.

Queries are generated according to a textual file which is read sequentially
in a loop until a configured duration elapses. The order of queries is not
guaranteed. Responses are received (unless disabled) and counted, but not
checked against queries.

The number of parallel threads is autodetected according to the number of queues
configured for the network interface.

Parameters

	filename
	Path to the queries file. See the description below regarding the file format.

	target
	Either the domain name, IPv4 or IPv6 address of a remote target.

Options

	-t, --duration seconds
	Duration of traffic generation, specified as a decimal number in seconds
(default is 5.0).

	-T, --tcp[=debug_mode]
	Send queries over TCP. See the list of optional debug modes below.

	-U, --quic[=debug_mode]
	Send queries over QUIC. See the list of optional debug modes below.

	-Q, --qps queries
	Number of queries-per-second (approximately) to be sent (default is 1000).
The program is not optimized for low speeds at which it may lose
communication packets. The recommended minimum speed is 2 packets per thread
(Rx/Tx queue).

	-b, --batch size
	Send more queries in a batch. Improves QPS but may affect the counterpart's
packet loss (default is 10 for UDP and 1 for TCP/QUIC).

	-r, --drop
	Drop incoming responses. Improves QPS, but disables response statistics.

	-p, --port number
	Remote destination port (default is 53 for UDP/TCP, 853 for QUIC).

	-F, --affinity cpu_spec
	CPU affinity for all threads specified in the format [<cpu_start>][s<cpu_step>],
where <cpu_start> is the CPU ID for the first thread and <cpu_step> is the
CPU ID increment for next thread (default is 0s1).

	-i, --infile filename
	Path to a file with query templates.

	-B, --binary
	Specify that input file is in binary format. This format is similar to the
TCP DNS message format. The file contains records formatted as 2-octet length
(network order) followed by a message in DNS wire format.

	-I, --interface interface
	Network interface for outgoing communication. This can be useful in situations
when the interfaces are in a bond for example.

	-l, --local localIP[/prefix]
	Override the auto-detected source IP address. If an address range is specified
instead, various IPs from the range will be used for different queries uniformly
(address range not supported in the QUIC mode).

	-L, --mac-local
	Override auto-detected local MAC address.

	-R, --mac-remote
	Override auto-detected remote MAC address.

	-v, --vlan id
	Add VLAN 802.1Q header with the given id. VLAN offloading should be disabled.

	-e, --edns-size size
	EDNS UDP payload size, range 512-4096 (default is 1232). Note that over XDP
the maximum supported MTU is 1790.

	-m, --mode mode
	Set the XDP mode. Supported values are:

	auto (default) – the XDP mode is selected automatically to achieve
the best performance, which means that native driver support is preferred
over the generic one, and zero-copy is used if available.

	copy – the XDP socket copy mode is forced even if zero-copy
is available. This can resolve various driver issues, but at the cost
of lower performance.

	generic – the generic XDP implementation is forced even if native
implementation is available. This mode doesn't require support from the
driver nor hardware, but offers the worst performance.

	-G, --qlog path
	Generate qlog files in the directory specified by path. The directory
has to exist.

This option is ignored if not in the QUIC mode. The recommended usage is
with --quic=R or with low QPS. Otherwise, too many files are generated.

	-j, --json
	Print statistics formatted as json.

	-S, --stats-period period
	Report statistics automatically every period milliseconds.

These reports contain only metrics collected in the given period.

	-h, --help
	Print the program help.

	-V, --version
	Print the program version. The option -VV makes the program
print the compile time configuration summary.

Queries file format

Each line describes a query in the form:

query_name query_type [flags]

Where query_name is a domain name to be queried, query_type is a record type
name, and flags is a single character:

E Send query with EDNS.

D Request DNSSEC (EDNS + DO flag).

TCP/QUIC debug modes

	0
	Perform full handshake for all connections (QUIC only).

	1
	Just send SYN (Initial) and receive SYN-ACK (Handshake).

	2
	Perform TCP/QUIC handshake and don't send anything, allow close initiated by counterpart.

	3
	Perform TCP/QUIC handshake and don't react further.

	5
	Send incomplete query (N-1 bytes) and don't react further.

	7
	Send query and don't ACK the response or anything further.

	8
	Don't close the connection and ignore close by counterpart.

	9
	Operate normally except for not ACKing the final FIN+ACK (TCP only).

	R
	Instead of opening a connection for each query, reuse connections.

Signals

Sending USR1 signal to a running process triggers current statistics dump
to the standard output. In combination with -S may cause erratic printout
timing.

Notes

Linux kernel 4.18+ is required.

The utility has to be executed under root or with these capabilities:
CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_ADMIN, CAP_IPC_LOCK, and CAP_SYS_RESOURCE
(Linux < 5.11).

The utility allocates source UDP/TCP ports from the range 2000-65535.

Due to the multi-threaded program structure there are slight discrepancies in
the timespan during which metrics are collected for any given thread. The
statistics printouts ignore this and are thus ever-so-slightly inaccurate. The
error margin decreases proportionally to the volume of data & timespan over
which they are collected.

Exit values

Exit status of 0 means successful operation. Any other exit status indicates
an error.

Examples

Manually created queries file:

abc6.example.com. AAAA
nxdomain.example.com. A
notzone. A
a.example.com. NS E
ab.example.com. A D
abcd.example.com. DS D

Queries file generated from a zone file (Knot DNS format):

cat ZONE_FILE | awk "{print \$1,\$3}" | grep -E "(NS|DS|A|AAAA|PTR|MX|SOA)$" | sort -u -R > queries.txt

Basic usage:

kxdpgun -i ~/queries.txt 2001:DB8::1

Using UDP with increased batch size:

kxdpgun -t 20 -Q 1000000 -i ~/queries.txt -b 20 -p 8853 192.0.2.1

Using TCP:

kxdpgun -t 20 -Q 100000 -i ~/queries.txt -T -p 8853 192.0.2.1

See Also

kdig(1).

Migration

Upgrade 2.4.x to 2.5.x

This chapter describes some steps necessary after upgrading Knot DNS from
version 2.4.x to 2.5.x.

Building changes

The --enable-dnstap configure option now enables the dnstap support in
kdig only! To build the dnstap query module, --with-module-dnstap
have to be used.

Since Knot DNS version 2.5.0 each query module can be configured to be:

	disabled: --with-module-MODULE_NAME=no

	embedded: --with-module-MODULE_NAME=yes

	external: --with-module-MODULE_NAME=shared (excluding
dnsproxy and onlinesign)

The --with-timer-mapsize configure option was replaced with the runtime
template.max-timer-db-size configuration option.

KASP DB migration

Knot DNS version 2.4.x and earlier uses JSON files to store DNSSEC keys metadata,
one for each zone. 2.5.x versions store those in binary format in a LMDB, all zones
together. The migration is possible with the
pykeymgr [https://gitlab.nic.cz/knot/knot-dns/blob/2.6/src/utils/pykeymgr/pykeymgr.in]
script:

$ pykeymgr -i path/to/keydir

The path to KASP DB directory is configuration-dependent, usually it is the keys
subdirectory in the zone storage.

In rare installations, the JSON files might be spread across more directories. In such
case, it is necessary to put them together into one directory and migrate at once.

Configuration changes

It is no longer possible to configure KASP DB per zone or in a non-default
template. Ensure just one common KASP DB configuration in the default
template.

As Knot DNS version 2.5.0 brings dynamically loaded modules, some modules
were renamed for technical reasons. So it is necessary to rename all
occurrences (module section names and references from zones or templates)
of the following module names in the configuration:

mod-online-sign -> mod-onlinesign

mod-synth-record -> mod-synthrecord

Upgrade 2.5.x to 2.6.x

Upgrading from Knot DNS version 2.5.x to 2.6.x is almost seamless.

Configuration changes

The dsa and dsa-nsec3-sha1 algorithm values are no longer supported
by the algorithm option.

The ixfr-from-differences zone/template option was deprecated in favor of
the zonefile-load option.

Upgrade 2.6.x to 2.7.x

Upgrading from Knot DNS version 2.6.x to 2.7.x is seamless if no obsolete
configuration or module rosedb is used.

Upgrade 2.7.x to 2.8.x

Upgrading from Knot DNS version 2.7.x to 2.8.x is seamless.

However, if the previous version was migrated (possibly indirectly)
from version 2.5.x, the format of the keys stored in
Keys And Signature Policy Database
is no longer compatible and needs to be updated.

The easiest ways to update how keys are stored in KASP DB is to modify
with Keymgr version 2.7.x
some of each key's parameters in an undamaging way, e.g.:

$ keymgr example.com. list
$ keymgr example.com. set <keyTag> created=1
$ keymgr example.com. set <keyTag2> created=1
...

Upgrade 2.8.x to 2.9.x

Upgrading from Knot DNS version 2.8.x to 2.9.x is almost seamless but check
the following changes first.

Configuration changes

	Imperfect runtime reconfiguration of udp-workers,
tcp-workers, and listen
is no longer supported.

	Replaced options (with backward compatibility):

	Old section

	Old item name

	New section

	New item name

	server

	tcp-reply-timeout [s]

	server

	tcp-remote-io-timeout [ms]

	server

	max-tcp-clients

	server

	tcp-max-clients

	server

	max-udp-payload

	server

	udp-max-payload

	server

	max-ipv4-udp-payload

	server

	udp-max-payload-ipv4

	server

	max-ipv6-udp-payload

	server

	udp-max-payload-ipv6

	template

	journal-db

	database

	journal-db

	template

	journal-db-mode

	database

	journal-db-mode

	template

	max-journal-db-size

	database

	journal-db-max-size

	template

	kasp-db

	database

	kasp-db

	template

	max-kasp-db-size

	database

	kasp-db-max-size

	template

	timer-db

	database

	timer-db

	template

	max-timer-db-size

	database

	timer-db-max-size

	zone

	max-journal-usage

	zone

	journal-max-usage

	zone

	max-journal-depth

	zone

	journal-max-depth

	zone

	max-zone-size

	zone

	zone-max-size

	zone

	max-refresh-interval

	zone

	refresh-max-interval

	zone

	min-refresh-interval

	zone

	refresh-min-interval

	Removed options (no backward compatibility):

	server.tcp-handshake-timeout

	zone.request-edns-option

	New default value for:

	tcp-workers

	tcp-max-clients

	udp-max-payload

	udp-max-payload-ipv4

	udp-max-payload-ipv6

	New DNSSEC policy option rrsig-pre-refresh may affect
configuration validity, which is rrsig-refresh + rrsig-pre-refresh < rrsig-lifetime

Miscellaneous changes

	Memory use estimation via knotc zone-memstats was removed

	Based on https://tools.ietf.org/html/draft-ietf-dnsop-server-cookies
the module DNS Cookies was updated to be interoperable

	Number of open files limit is set to 1048576 in upstream packages

Upgrade 2.9.x to 3.0.x

Knot DNS version 3.0.x is functionally compatible with 2.9.x with the following
exceptions.

ACL

Configuration option update-owner-name is newly FQDN-sensitive.
It means that values a.example.com and a.example.com. are not equivalent.

Module synthrecord

Reverse IPv6 address shortening is enabled by default.
For example, the module generates:

dynamic-2620-0-b61-100--1.test. 400 IN AAAA 2620:0:b61:100::1

instead of:

dynamic-2620-0000-0b61-0100-0000-0000-0000-0001.test. 400 IN AAAA 2620:0:b61:100::1

Query module API change

The following functions require additional parameter (thread id – qdata->params->thread_id)
on the second position:

knotd_mod_stats_incr()
knotd_mod_stats_decr()
knotd_mod_stats_store()

Building notes

	The embedded library LMDB is no longer part of the source code. Almost every
modern operating system has a sufficient version of this library.

	DoH support in kdig requires optional library libnghttp2.

	XDP support on Linux requires optional library libbpf >= 0.0.6. If not available,
an embedded library can be used via --enable-xdp=yes configure option.

Upgrade 3.0.x to 3.1.x

Knot DNS version 3.1.x is functionally compatible with 3.0.x with the following
exceptions.

Configuration changes

	Automatic SOA serial incrementation (zonefile-load: difference-no-serial)
requires having full zone stored in the journal (journal-content: all).
This change is necessary for reliable operation.

	Replaced options (with backward compatibility):

	Old section

	Old item name

	New section

	New item name

	server

	listen-xdp

	xdp

	listen

	Ignored obsolete options (with a notice log):

	server.max-ipv4-udp-payload

	server.max-ipv6-udp-payload

	server.max-udp-payload

	server.max-tcp-clients

	server.tcp-reply-timeout

	zone.max-journal-depth

	zone.max-journal-usage

	zone.max-refresh-interval

	zone.min-refresh-interval

	zone.max-zone-size

	template.journal-db

	template.kasp-db

	template.timer-db

	template.max-journal-db-size

	template.max-timer-db-size

	template.max-kasp-db-size

	template.journal-db-mode

	Silently ignored obsolete options:

	server.tcp-handshake-timeout

	zone.disable-any

Zone backup and restore

The online backup format has changed slightly since 3.0 version. For zone-restore
from backups in the previous format, it's necessary to set the -f option.
Offline restore procedure of zone files from online backups is different than
what it was before. The details are described in Data and metadata backup.

Building notes

	The configure option --enable-xdp=yes has slightly changed its semantics.
It first tries to find an external library libbpf. If it's not detected,
the embedded one is used instead.

	The kxdpgun tool also depends on library libmnl.

Packaging

Users who use module geoip or dnstap might
need installing an additional package with the module.

Upgrade 3.1.x to 3.2.x

Knot DNS version 3.2.x is functionally compatible with 3.1.x with the following
exceptions.

Configuration changes

	Default value for:

	journal-max-depth was lowered to 20.
This change may trigger journal history merging.

	nsec3-iterations was lowered to 0.
This change may trigger complete NSEC3 chain reconstruction!

	rrsig-refresh is set to propagation-delay + "zone maximum TTL".
This change affects effective RRSIG lifetime!

	New checks:

	rrsig-refresh must be high enough to ensure all RRSIGs are
refreshed before their expiration.

	A notice log message is emitted if algorithm is deprecated.

	Ignored obsolete option (with a notice log):

	server.listen-xdp

Utilities:

	knotc prints simplified zones status by default. Use -e
for full output.

	keymgr uses the brief key listing mode by default. Use -e
for full output.

	keymgr parameter -d was renamed to -D.

	kjournalprint parameter -c was renamed to -H.

Packaging

	Linux distributions Debian 9 and Ubuntu 16.04 are no longer supported.

	Packages for CentOS 7 are stored in a separate COPR repository
cznic/knot-dns-latest-centos7.

	Utilities kzonecheck, kzonesign,
and knsec3hash are located in a new knot-dnssecutils
package.

Python

	Compatibility with Python 2 was removed.

Upgrade 3.2.x to 3.3.x

There are some changes between Knot DNS versions 3.3.x and 3.2.x that should be
taken into consideration before upgrading.

Configuration changes

	The configuration option xdp_quic-log has been replaced with a more general
logging option quic, which applies to both conventional QUIC and
QUIC over XDP.

Functionality

	Responses to forwarded DDNS requests are signed with the local TSIG key instead
of the remote one if the TSIG secret is known. To forward DDNS requests
signed with a locally unknown key, an ACL rule for the action update without
a key must be configured for the zone.

	Addresses for the remote which is considered the source of the NOTIFY are tried
in the order they are specified in the remote configuration, regardless of which
address the NOTIFY came from.

	Semantic checks don't allow DS record at non-delegation point.

	The Version: prefix has been removed from the status version control output.

	DNS over QUIC requires doq ALPN. The previous versions doq-i03 and
doq-i11 are no longer supported.

XDP

The embedded library libbpf has been removed from the project, and an external
one is required for the XDP support. If libbpf is version 1.0 or higher,
an additional library libxdp is also required.

Query module API change

The function knotd_qdata_local_addr() only takes one parameter.

Upgrade 3.3.x to 3.4.x

There are the following changes between Knot DNS versions 3.4.x and 3.3.x.

DNSSEC

	DNSSEC validation fails if the remaining RRSIG validity is shorter than
the corresponding rrsig-refresh value.

	SKR verification fails if the end of a DNSKEY RRSIG validity period doesn't
cover the next DNSKEY snapshot.

	If DNSSEC signing is enabled, the outbound request's EDNS expire value is
lowered to the earliest RRSIG expiration if it is higher.

Semantic checks

	Just one SOA record is required.

	Unified DNAME and CNAME semantic checks (see Handling CNAME and DNAME-related updates).

Configuration changes

	The server no longer allows concurrent control zone and configuration transactions.

	The server no longer allows opening a zone transaction when a blocking command is running.

	Removed already ignored obsolete options:

	server.max-ipv4-udp-payload

	server.max-ipv6-udp-payload

	server.max-udp-payload

	server.max-tcp-clients

	server.tcp-handshake-timeout

	server.tcp-reply-timeout

	server.listen-xdp

	xdp.quic-log

	zone.max-journal-depth

	zone.max-journal-usage

	zone.max-refresh-interval

	zone.min-refresh-interval

	zone.max-zone-size

	zone.disable-any

	template.journal-db

	template.kasp-db

	template.timer-db

	template.max-journal-db-size

	template.max-timer-db-size

	template.max-kasp-db-size

	template.journal-db-mode

Utilities

	Changed defaults:

	kdig: enabled +edns and +bufsize=1232

	Removed legacy parameters:

	keymgr: --brief

	kjournalprint: --no-color

	kjournalprint: database specification without --dir

	kjournalprint: database specification without --dir

Documentation

	Info pages are no longer supported.

Building notes

	A GCC or LLVM Clang compiler with C11 support is required.

	Minimum required GnuTLS version is 3.6.10.

	Libidn version 1 is no longer supported.

	Liburcu must be available via pkg-config.

	Linux distributions CentOS 7, Debian 10, and Ubuntu 18.04 are no longer supported.

Knot DNS for BIND users

Automatic DNSSEC signing

Migrating automatically signed zones from BIND to Knot DNS requires copying
up-to-date zone files from BIND, importing existing private keys, and updating
server configuration:

	To obtain current content of the zone which is being migrated,
request BIND to flush the zone into the zone file: rndc sync
example.com.

Note

If dynamic updates (DDNS) are enabled for the given zone, you
might need to freeze the zone before flushing it. That can be done
similarly:

$ rndc freeze example.com

	Copy the fresh zone file into the zones storage
directory of Knot DNS.

	Import all existing zone keys into the KASP database. Make sure that all
the keys were imported correctly:

$ keymgr example.com. import-bind path/to/Kexample.com.+013+11111
$ keymgr example.com. import-bind path/to/Kexample.com.+013+22222
$...
$ keymgr example.com. list

Note

If the server configuration file or database is not at the default location,
add a configuration parameter (-c or -C). See keymgr
for more info about required access rights to the key files.

	Follow Automatic DNSSEC signing steps to configure DNSSEC signing.

Appendices

Compatible PKCS #11 Devices

This section has informative character. Knot DNS has been tested with several
devices which claim to support PKCS #11 interface. The following table
indicates which algorithms and operations have been observed to work. Please
notice minimal GnuTLS library version required for particular algorithm
support.

	
	Key generate

	Key import

	ED25519 256-bit

	ECDSA 256-bit

	ECDSA 384-bit

	RSA 1024-bit

	RSA 2048-bit

	RSA 4096-bit

	Feitian ePass 2003 [https://www.ftsafe.com/Products/PKI/Standard]

	yes

	no

	no

	no

	no

	yes

	yes

	no

	SafeNet Network HSM (Luna SA 4) [https://safenet.gemalto.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-sa-network-hsm/]

	yes

	no

	no

	no

	no

	yes

	yes

	yes

	SoftHSM 2.0 [https://www.opendnssec.org/softhsm/] [1]

	yes

	yes

	yes

	yes

	yes

	yes

	yes

	yes

	Trustway Proteccio NetHSM [https://atos.net/en/solutions/cyber-security/data-protection-and-governance/hardware-security-module-trustway-proteccio-nethsm]

	yes

	ECDSA only

	no

	yes

	yes

	yes

	yes

	yes

	Ultra Electronics CIS Keyper Plus (Model 9860-2) [https://www.ultra.group/our-business-units/intelligence-communications/cyber/key-management/#acc-keyperplus]

	yes

	RSA only

	no

	yes

	yes

	yes

	yes

	yes

	Utimaco SecurityServer (V4) [https://hsm.utimaco.com/products-hardware-security-modules/general-purpose-hsm/securityserver-cse/] [2]

	yes

	yes

	no

	yes

	yes

	yes

	yes

	yes

[1]
Algorithms supported depend on support in OpenSSL on which SoftHSM relies.
A command similar to the following may be used to verify what algorithms are supported:
$ pkcs11-tool --modul /usr/lib64/pkcs11/libsofthsm2.so -M.

[2]
Requires setting the number of background workers to 1!

 Table of Contents

 		
 Welcome to Knot DNS's documentation!

		
 Introduction
 		
 What is Knot DNS

		
 Knot DNS features

		
 License

		
 Requirements
 		
 Hardware
 		
 CPU requirements

		
 Network card

		
 Memory requirements

		
 Operating system

		
 Required libraries

		
 Optional libraries

		
 Installation
 		
 Installation from a package

		
 Installation from source code
 		
 Required build environment

		
 Getting the source code

		
 Configuring and generating Makefiles

		
 Compilation

		
 Installation

		
 Configuration
 		
 Simple configuration

		
 Zone templates

		
 Access control list (ACL)

		
 Secondary (slave) zone

		
 Primary (master) zone

		
 Dynamic updates
 		
 Restricting dynamic updates

		
 Handling CNAME and DNAME-related updates

		
 Automatic DNSSEC signing
 		
 Automatic ZSK management

		
 Automatic KSK management

		
 Manual key management

		
 Zone signing

		
 On-secondary (on-slave) signing

		
 Catalog zones
 		
 Catalog zones configuration examples

		
 DNS over QUIC
 		
 Zone transfers

		
 DNS over TLS

		
 Query modules

		
 Performance Tuning
 		
 Numbers of Workers

		
 Number of available file descriptors

		
 Sysctl and NIC optimizations

		
 Operation
 		
 Configuration database

		
 Dynamic configuration

		
 Secondary (slave) mode

		
 Primary (master) mode

		
 Reading and editing zones

		
 Reading and editing the zone file safely

		
 Zone loading

		
 Journal behaviour

		
 Handling zone file, journal, changes, serials
 		
 Example 1

		
 Example 2

		
 Example 3

		
 Example 4

		
 Zone bootstrapping on secondary

		
 Zone expiration

		
 DNSSEC key states

		
 DNSSEC key rollovers
 		
 Automatic KSK and ZSK rollovers example

		
 DNSSEC shared KSK

		
 DNSSEC delete algorithm

		
 DNSSEC Offline KSK
 		
 Prerequisites

		
 Generating and signing future ZSKs

		
 Offline KSK and manual ZSK management

		
 Offline KSK roll-over

		
 Emergency SKR

		
 DNSSEC multi-signer
 		
 Sharing private keys, manual policy

		
 Sharing private keys, automatic policy

		
 Distinct keys, DNSKEY record synchronization

		
 Distinct keys, DNSKEY at common unsigned primary

		
 DNSSEC keys import to HSM

		
 Daemon controls

		
 Logging

		
 Data and metadata backup
 		
 Online backup

		
 Offline restore

		
 Online restore

		
 Limitations

		
 Statistics

		
 Mode XDP
 		
 Pre-requisites

		
 Optimizations

		
 Limitations

		
 Troubleshooting
 		
 Reporting bugs

		
 Generating backtrace

		
 Crash caused by a Bus error

		
 Configuration Reference
 		
 Description

		
 Comments

		
 Including configuration
 		
 include

		
 Clearing configuration sections
 		
 clear

		
 module section
 		
 id

		
 file

		
 server section
 		
 identity

		
 version

		
 nsid

		
 rundir

		
 user

		
 pidfile

		
 udp-workers

		
 tcp-workers

		
 background-workers

		
 async-start

		
 tcp-idle-timeout

		
 tcp-io-timeout

		
 tcp-remote-io-timeout

		
 tcp-reuseport

		
 tcp-fastopen

		
 quic-max-clients

		
 quic-outbuf-max-size

		
 quic-idle-close-timeout

		
 remote-pool-limit

		
 remote-pool-timeout

		
 remote-retry-delay

		
 socket-affinity

		
 tcp-max-clients

		
 udp-max-payload

		
 udp-max-payload-ipv4

		
 udp-max-payload-ipv6

		
 key-file

		
 cert-file

		
 edns-client-subnet

		
 answer-rotation

		
 automatic-acl

		
 proxy-allowlist

		
 dbus-event

		
 dbus-init-delay

		
 listen

		
 listen-quic

		
 listen-tls

		
 xdp section
 		
 listen

		
 udp

		
 tcp

		
 quic

		
 quic-port

		
 tcp-max-clients

		
 tcp-inbuf-max-size

		
 tcp-outbuf-max-size

		
 tcp-idle-close-timeout

		
 tcp-idle-reset-timeout

		
 tcp-resend-timeout

		
 route-check

		
 ring-size

		
 busypoll-budget

		
 busypoll-timeout

		
 control section
 		
 listen

		
 backlog

		
 timeout

		
 log section
 		
 target

		
 server

		
 control

		
 zone

		
 quic

		
 any

		
 statistics section
 		
 timer

		
 file

		
 append

		
 database section
 		
 storage

		
 journal-db

		
 journal-db-mode

		
 journal-db-max-size

		
 kasp-db

		
 kasp-db-max-size

		
 timer-db

		
 timer-db-max-size

		
 catalog-db

		
 catalog-db-max-size

		
 keystore section
 		
 id

		
 backend

		
 config

		
 key-label

		
 key section
 		
 id

		
 algorithm

		
 secret

		
 remote section
 		
 id

		
 address

		
 via

		
 quic

		
 tls

		
 key

		
 cert-key

		
 block-notify-after-transfer

		
 no-edns

		
 automatic-acl

		
 remotes section
 		
 id

		
 remote

		
 acl section
 		
 id

		
 address

		
 key

		
 cert-key

		
 remote

		
 action

		
 protocol

		
 deny

		
 update-type

		
 update-owner

		
 update-owner-match

		
 update-owner-name

		
 submission section
 		
 id

		
 parent

		
 check-interval

		
 timeout

		
 parent-delay

		
 dnskey-sync section
 		
 id

		
 remote

		
 check-interval

		
 policy section
 		
 id

		
 keystore

		
 manual

		
 single-type-signing

		
 algorithm

		
 ksk-size

		
 zsk-size

		
 ksk-shared

		
 dnskey-ttl

		
 zone-max-ttl

		
 keytag-modulo

		
 ksk-lifetime

		
 zsk-lifetime

		
 delete-delay

		
 propagation-delay

		
 rrsig-lifetime

		
 rrsig-refresh

		
 rrsig-pre-refresh

		
 reproducible-signing

		
 nsec3

		
 nsec3-iterations

		
 nsec3-opt-out

		
 nsec3-salt-length

		
 nsec3-salt-lifetime

		
 signing-threads

		
 ksk-submission

		
 ds-push

		
 dnskey-sync

		
 cds-cdnskey-publish

		
 cds-digest-type

		
 dnskey-management

		
 offline-ksk

		
 unsafe-operation

		
 template section
 		
 id

		
 global-module

		
 zone section
 		
 domain

		
 template

		
 storage

		
 file

		
 master

		
 ddns-master

		
 notify

		
 acl

		
 master-pin-tolerance

		
 provide-ixfr

		
 semantic-checks

		
 default-ttl

		
 zonefile-sync

		
 zonefile-load

		
 journal-content

		
 journal-max-usage

		
 journal-max-depth

		
 ixfr-benevolent

		
 ixfr-by-one

		
 ixfr-from-axfr

		
 zone-max-size

		
 adjust-threads

		
 dnssec-signing

		
 dnssec-validation

		
 dnssec-policy

		
 ds-push

		
 zonemd-verify

		
 zonemd-generate

		
 serial-policy

		
 serial-modulo

		
 reverse-generate

		
 refresh-min-interval

		
 refresh-max-interval

		
 retry-min-interval

		
 retry-max-interval

		
 expire-min-interval

		
 expire-max-interval

		
 catalog-role

		
 catalog-template

		
 catalog-zone

		
 catalog-group

		
 module

		
 Modules
 		
 authsignal â€“ Automatic Authenticated DNSSEC Bootstrapping records
 		
 Example

		
 cookies â€” DNS Cookies
 		
 Example

		
 Module reference

		
 dnsproxy â€“ Tiny DNS proxy
 		
 Example

		
 Module reference

		
 dnstap â€“ Dnstap traffic logging
 		
 Example

		
 Module reference

		
 geoip â€” Geography-based responses
 		
 DNSSEC support

		
 Example

		
 Configuration file

		
 Module configuration examples

		
 Module reference

		
 noudp â€” No UDP response
 		
 Example

		
 Module reference

		
 onlinesign â€” Online DNSSEC signing
 		
 Example

		
 Module reference

		
 probe â€” DNS traffic probe
 		
 Example

		
 Module reference

		
 queryacl â€” Limit queries by remote address or target interface
 		
 Example

		
 Module reference

		
 rrl â€” Response rate limiting
 		
 Example

		
 Module reference

		
 stats â€” Query statistics
 		
 Example

		
 Module reference

		
 synthrecord â€“ Automatic forward/reverse records
 		
 Example

		
 Module reference

		
 whoami â€” Whoami response
 		
 Example

		
 Utilities
 		
 knotd â€“ Knot DNS server daemon
 		
 Synopsis

		
 Description

		
 Exit values

		
 See Also

		
 knotc â€“ Knot DNS control utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 Examples

		
 See Also

		
 keymgr â€“ Key management utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 Examples

		
 See Also

		
 kjournalprint â€“ Knot DNS journal print utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 Examples

		
 See Also

		
 kcatalogprint â€“ Knot DNS catalog print utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 See Also

		
 kzonecheck â€“ Knot DNS zone file checking tool
 		
 Synopsis

		
 Description

		
 Exit values

		
 See Also

		
 kzonesign â€“ DNSSEC signing utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 See Also

		
 kdig â€“ Advanced DNS lookup utility
 		
 Synopsis

		
 Description

		
 Notes

		
 Exit values

		
 Examples

		
 Files

		
 See Also

		
 khost â€“ Simple DNS lookup utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 Examples

		
 Files

		
 See Also

		
 knsec3hash â€“ NSEC hash computation utility
 		
 Synopsis

		
 Description

		
 Exit values

		
 Examples

		
 See Also

		
 knsupdate â€“ Dynamic DNS update utility
 		
 Synopsis

		
 Description

		
 Notes

		
 Exit values

		
 Examples

		
 See Also

		
 kxdpgun â€“ DNS benchmarking tool
 		
 Synopsis

		
 Description

		
 Notes

		
 Exit values

		
 Examples

		
 See Also

		
 Migration
 		
 Upgrade 2.4.x to 2.5.x
 		
 Building changes

		
 KASP DB migration

		
 Configuration changes

		
 Upgrade 2.5.x to 2.6.x
 		
 Configuration changes

		
 Upgrade 2.6.x to 2.7.x

		
 Upgrade 2.7.x to 2.8.x

		
 Upgrade 2.8.x to 2.9.x
 		
 Configuration changes

		
 Miscellaneous changes

		
 Upgrade 2.9.x to 3.0.x
 		
 ACL

		
 Module synthrecord

		
 Query module API change

		
 Building notes

		
 Upgrade 3.0.x to 3.1.x
 		
 Configuration changes

		
 Zone backup and restore

		
 Building notes

		
 Packaging

		
 Upgrade 3.1.x to 3.2.x
 		
 Configuration changes

		
 Utilities:

		
 Packaging

		
 Python

		
 Upgrade 3.2.x to 3.3.x
 		
 Configuration changes

		
 Functionality

		
 XDP

		
 Query module API change

		
 Upgrade 3.3.x to 3.4.x
 		
 DNSSEC

		
 Semantic checks

		
 Configuration changes

		
 Utilities

		
 Documentation

		
 Building notes

		
 Knot DNS for BIND users
 		
 Automatic DNSSEC signing

		
 Appendices
 		
 Compatible PKCS #11 Devices

