
Knot DNS Documentation
Release 3.4.0

Copyright 2010–2024, CZ.NIC, z.s.p.o.

2024-09-02

CONTENTS

1 Introduction 1
1.1 What is Knot DNS . 1
1.2 Knot DNS features . 1
1.3 License . 2

2 Requirements 3
2.1 Hardware . 3
2.2 Operating system . 4
2.3 Required libraries . 4
2.4 Optional libraries . 4

3 Installation 5
3.1 Installation from a package . 5
3.2 Installation from source code . 5

4 Configuration 7
4.1 Simple configuration . 7
4.2 Zone templates . 7
4.3 Access control list (ACL) . 8
4.4 Secondary (slave) zone . 9
4.5 Primary (master) zone . 10
4.6 Dynamic updates . 11
4.7 Automatic DNSSEC signing . 13
4.8 Catalog zones . 16
4.9 DNS over QUIC . 19
4.10 DNS over TLS . 23
4.11 Query modules . 24
4.12 Performance Tuning . 25

5 Operation 27
5.1 Configuration database . 27
5.2 Dynamic configuration . 28
5.3 Secondary (slave) mode . 30
5.4 Primary (master) mode . 30
5.5 Reading and editing zones . 30
5.6 Reading and editing the zone file safely . 31
5.7 Zone loading . 31
5.8 Journal behaviour . 32
5.9 Handling zone file, journal, changes, serials . 32
5.10 Zone bootstrapping on secondary . 34
5.11 Zone expiration . 34
5.12 DNSSEC key states . 34
5.13 DNSSEC key rollovers . 35
5.14 DNSSEC shared KSK . 40
5.15 DNSSEC delete algorithm . 40

i

5.16 DNSSEC Offline KSK . 40
5.17 DNSSEC multi-signer . 43
5.18 DNSSEC keys import to HSM . 45
5.19 Daemon controls . 46
5.20 Logging . 46
5.21 Data and metadata backup . 47
5.22 Statistics . 48
5.23 Mode XDP . 49

6 Troubleshooting 51
6.1 Reporting bugs . 51
6.2 Generating backtrace . 51
6.3 Crash caused by a Bus error . 52

7 Configuration Reference 53
7.1 Description . 53
7.2 Comments . 54
7.3 Including configuration . 54
7.4 Clearing configuration sections . 54
7.5 module section . 55
7.6 server section . 55
7.7 xdp section . 63
7.8 control section . 66
7.9 log section . 67
7.10 statistics section . 69
7.11 database section . 69
7.12 keystore section . 71
7.13 key section . 72
7.14 remote section . 73
7.15 remotes section . 75
7.16 acl section . 76
7.17 submission section . 78
7.18 dnskey-sync section . 79
7.19 policy section . 80
7.20 template section . 88
7.21 zone section . 88

8 Modules 99
8.1 authsignal – Automatic Authenticated DNSSEC Bootstrapping records 99
8.2 cookies — DNS Cookies . 100
8.3 dnsproxy – Tiny DNS proxy . 101
8.4 dnstap – Dnstap traffic logging . 103
8.5 geoip — Geography-based responses . 105
8.6 noudp — No UDP response . 110
8.7 onlinesign — Online DNSSEC signing . 111
8.8 probe — DNS traffic probe . 113
8.9 queryacl — Limit queries by remote address or target interface 114
8.10 rrl — Response rate limiting . 115
8.11 stats — Query statistics . 119
8.12 synthrecord – Automatic forward/reverse records . 123
8.13 whoami — Whoami response . 126

9 Utilities 128
9.1 knotd – Knot DNS server daemon . 128
9.2 knotc – Knot DNS control utility . 129
9.3 keymgr – Key management utility . 134
9.4 kjournalprint – Knot DNS journal print utility . 139
9.5 kcatalogprint – Knot DNS catalog print utility . 141
9.6 kzonecheck – Knot DNS zone file checking tool . 142

ii

9.7 kzonesign – DNSSEC signing utility . 143
9.8 kdig – Advanced DNS lookup utility . 144
9.9 khost – Simple DNS lookup utility . 150
9.10 knsec3hash – NSEC hash computation utility . 151
9.11 knsupdate – Dynamic DNS update utility . 153
9.12 kxdpgun – DNS benchmarking tool . 156

10 Migration 160
10.1 Upgrade 2.4.x to 2.5.x . 160
10.2 Upgrade 2.5.x to 2.6.x . 161
10.3 Upgrade 2.6.x to 2.7.x . 161
10.4 Upgrade 2.7.x to 2.8.x . 161
10.5 Upgrade 2.8.x to 2.9.x . 161
10.6 Upgrade 2.9.x to 3.0.x . 162
10.7 Upgrade 3.0.x to 3.1.x . 163
10.8 Upgrade 3.1.x to 3.2.x . 164
10.9 Upgrade 3.2.x to 3.3.x . 165
10.10 Upgrade 3.3.x to 3.4.x . 166
10.11 Knot DNS for BIND users . 168

11 Appendices 169
11.1 Compatible PKCS #11 Devices . 169

Index 170

iii

CHAPTER

ONE

INTRODUCTION

1.1 What is Knot DNS

Knot DNS is a high-performance open-source DNS server. It implements only the authoritative domain name
service. Knot DNS can reliably serve TLD domains as well as any other zones.

Knot DNS benefits from its multi-threaded and mostly lock-free implementation which allows it to scale well on
SMP systems and operate non-stop even when adding or removing zones.

The server itself is accompanied by several utilities for general DNS operations or for maintaining the server.

For more info and downloads see www.knot-dns.cz.

1.2 Knot DNS features

DNS features:

• Primary and secondary server operation

• Internet (IN) and Chaos (CH) classes

• DNS extension (EDNS0, EDE, EXPIRE)

• UDP, TCP, TLS 1.3, and QUIC protocols

• Zone catalog generation and interpretation

• Minimal responses

• Dynamic zone updates

• DNSSEC with NSEC and NSEC3

• ZONEMD generation and validation

• Transaction signature using TSIG

• Full and incremental zone transfers (AXFR, IXFR)

• Name server identification using NSID or Chaos TXT records

• Resource record types A, NS, CNAME, SOA, PTR, HINFO, MINFO, MX, TXT, RP, AFSDB, RT,
KEY, AAAA, LOC, SRV, NAPTR, KX, CERT, DNAME, APL, DS, SSHFP, IPSECKEY, RRSIG, NSEC,
DNSKEY, DHCID, NSEC3, NSEC3PARAM, TLSA, SMIMEA, CDS, CDNSKEY, OPENPGPKEY,
CSYNC, ZONEMD, SVCB, HTTPS, SPF, NID, L32, L64, LP, EUI48, EUI64, URI, CAA, WALLET, and
Unknown

Server features:

• IPv4 and IPv6 support

• Semantic zone checks

• Server control interface

1

https://www.knot-dns.cz

Knot DNS Documentation, Release 3.4.0

• Zone journal storage

• Persistent zone event timers

• YAML-based or database-based configuration

• Query processing modules with dynamic loading

• On-the-fly zone management and server reconfiguration

• Multithreaded DNSSEC zone signing and zone validation

• Automatic DNSSEC key management

• Zone data backup and restore

• Offline KSK operation

• PKCS #11 interface

Remarkable module extensions:

• Response rate limiting

• Forward and reverse records synthesis

• DNS request traffic statistics

• Efficient DNS traffic logging interface

• Dnstap traffic logging

• Online DNSSEC signing

• GeoIP response tailoring supporting ECS and DNSSEC

Remarkable supported networking features:

• TCP Fast Open (client and server)

• Opportunistic, strict, and mutual authentication profiles over TLS 1.3 or QUIC

• High-performance UDP, TCP, and QUIC through AF_XDP processing (on Linux 4.18+)

• SO_REUSEPORT (on Linux) or SO_REUSEPORT_LB (on FreeBSD 12.0+) on UDP and by choice on TCP

• Binding to non-local addresses (IP_FREEBIND on Linux, IP_BINDANY/IPV6_BINDANY on FreeBSD)

• Ignoring PMTU information for IPv4/UDP via IP_PMTUDISC_OMIT

1.3 License

Knot DNS is licensed under the GNU General Public License version 3 or (at your option) any later version. The
full text of the license is available in the COPYING file distributed with source code.

1.3. License 2

https://www.gnu.org/copyleft/gpl.html

CHAPTER

TWO

REQUIREMENTS

2.1 Hardware

Knot DNS requirements are not very demanding for typical installations, and a commodity server or a virtual
solution will be sufficient in most cases.

However, please note that there are some scenarios that will require administrator's attention and some testing of
exact requirements before deploying Knot DNS to a production environment. These cases include deployment for
a large number of zones (DNS hosting), large number of records in one or more zones (TLD), or large number of
requests.

2.1.1 CPU requirements

The server scales with processing power and also with the number of available cores/CPUs. Enabling Hyper-
threading is convenient if supported.

There is no lower bound on the CPU requirements, but it should support memory barriers and atomic instructions
(i586 and newer).

2.1.2 Network card

The best results have been achieved with multi-queue network cards. The number of multi-queues should equal
the total number of CPU cores (with Hyper-threading enabled).

2.1.3 Memory requirements

The server implementation focuses on performance and thus can be quite memory demanding. The rough estimate
for memory requirements is 3 times the size of the zone in the plain-text format. Again this is only an estimate and
you are advised to do your own measurements before deploying Knot DNS to production.

Note: To ensure uninterrupted serving of the zone, Knot DNS employs the Read-Copy-Update mechanism instead
of locking and thus requires twice the amount of memory for the duration of incoming transfers.

3

Knot DNS Documentation, Release 3.4.0

2.2 Operating system

Knot DNS itself is written in a portable way and can be compiled and run on most UNIX-like systems, such as
Linux, *BSD, and macOS.

2.3 Required libraries

Knot DNS requires a few libraries to be available:

• gnutls >= 3.6.10

• libedit

• liburcu

• lmdb >= 0.9.15

Note: The LMDB library is included with Knot DNS source code. However, linking with the system library is
preferred.

2.4 Optional libraries

International Domain Names support (IDNA2008) in kdig:

• libidn2

Systemd's startup notification mechanism and journald logging:

• libsystemd

Dnstap support in kdig or module dnstap:

• fstrm (and protobuf-c if building from source code)

Linux capabilities(7) support, which allows the server to be started as a non-root user/group, binding to
privileged ports (53), and giving up all its capabilities, resulting in a completely unprivileged process:

• libcap-ng >= 0.6.4

MaxMind database for geodb support in module geoip:

• libmaxminddb0

DNS-over-HTTPS (DoH) support in kdig:

• libnghttp2

The XDP functionality and kxdpgun tool. These are only supported on Linux operating systems. See the chapter
Mode XDP for software and hardware recommendations.

• libbpf

• libxdp (if libbpf >= 1.0)

• libmnl (for kxdpgun)

DNS-over-QUIC (DoQ) support in knotd, kxdpgun, and kdig:

• libngtcp2 >= 0.17.0 (or embedded one via --enable-quic)

• gnutls >= 3.7.3

• Mode XDP (for knotd and kxdpgun)

2.2. Operating system 4

CHAPTER

THREE

INSTALLATION

3.1 Installation from a package

Knot DNS may already be included in your operating system distribution and therefore can be installed from
packages (Linux), ports (BSD), or via Homebrew (macOS). This is always preferred unless you want to test the
latest features, contribute to Knot development, or you know what you are doing.

See the project download page for the latest information.

3.2 Installation from source code

3.2.1 Required build environment

The build process relies on these standard tools:

• make

• libtool

• pkg-config

• autoconf >= 2.65

• python-sphinx (optional, for documentation building)

A GCC or LLVM Clang compiler with C11 support.

3.2.2 Getting the source code

You can find the source code for the latest release on www.knot-dns.cz. Alternatively, you can fetch the whole
project from the git repository https://gitlab.nic.cz/knot/knot-dns.git.

After obtaining the source code, compilation and installation is quite a straightforward process using autotools.

3.2.3 Configuring and generating Makefiles

If compiling from git source, you need to bootstrap the ./configure file first:

$ autoreconf -i -f

In most cases, you can just run configure without any options:

$./configure

For all available configure options run:

5

https://www.knot-dns.cz/download
https://www.knot-dns.cz
https://gitlab.nic.cz/knot/knot-dns

Knot DNS Documentation, Release 3.4.0

$./configure --help

3.2.4 Compilation

After running ./configure you can compile Knot DNS by running make command, which will produce binaries
and other related files:

$ make

Note: The compilation with enabled optimizations may take a long time. In such a case the
--disable-fastparser configure option can help.

3.2.5 Installation

When you have finished building Knot DNS, it's time to install the binaries and configuration files into the operation
system hierarchy. You can do so by executing:

$ make install

When installing as a non-root user, you might have to gain elevated privileges by switching to root user, e.g. sudo
make install or su -c 'make install'.

3.2. Installation from source code 6

CHAPTER

FOUR

CONFIGURATION

4.1 Simple configuration

The following example presents a simple configuration file which can be used as a base for your Knot DNS setup:

Example of a very simple Knot DNS configuration.

server:
listen: 0.0.0.0@53
listen: ::@53

zone:
- domain: example.com
storage: /var/lib/knot/zones/
file: example.com.zone

log:
- target: syslog
any: info

Now let's walk through this configuration step by step:

• The listen statement in the server section defines where the server will listen for incoming connections. We
have defined the server to listen on all available IPv4 and IPv6 addresses, all on port 53.

• The zone section defines the zones that the server will serve. In this case, we defined one zone named
example.com which is stored in the zone file /var/lib/knot/zones/example.com.zone.

• The log section defines the log facilities for the server. In this example, we told Knot DNS to send its log
messages with the severity info or more serious to the syslog (or systemd journal).

For detailed description of all configuration items see Configuration Reference.

4.2 Zone templates

A zone template allows a single zone configuration to be shared among several zones. There is no inheritance
between templates; they are exclusive. The default template identifier is reserved for the default template:

template:
- id: default
storage: /var/lib/knot/master
semantic-checks: on

- id: signed
storage: /var/lib/knot/signed

(continues on next page)

7

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

dnssec-signing: on
semantic-checks: on
master: [master1, master2]

- id: slave
storage: /var/lib/knot/slave

zone:
- domain: example1.com # Uses default template

- domain: example2.com # Uses default template
semantic-checks: off # Override default settings

- domain: example.cz
template: signed
master: master3 # Override masters to just master3

- domain: example1.eu
template: slave
master: master1

- domain: example2.eu
template: slave
master: master2

Note: Each template option can be explicitly overridden in zone-specific configuration.

4.3 Access control list (ACL)

Normal DNS queries are always allowed. All other DNS requests must be authorized before they can be processed
by the server. A zone can have configured ACL which is a sequence of rules describing what requests are authorized.
An automatic ACL feature can be used to simplify ACL management.

Every ACL rule can allow or deny one or more request types (actions) based on the source IP address, network
subnet, or address range and/or if the request is secured by a given TSIG key. See keymgr -t on how to generate a
TSIG key.

If there are multiple ACL rules assigned to a zone, they are applied in the specified order of the acl configuration.
The first rule that matches the given request is applied and the remaining rules are ignored. Some examples:

acl:
- id: address_rule
address: [2001:db8::1, 192.168.2.0/24]
action: transfer

- id: deny_rule
address: 192.168.2.100
action: transfer
deny: on

zone:
- domain: acl1.example.com
acl: [deny_rule, address_rule] # Allow some addresses with an exception

4.3. Access control list (ACL) 8

Knot DNS Documentation, Release 3.4.0

key:
- id: key1 # The real TSIG key name
algorithm: hmac-sha256
secret: 4Tc0K1QkcMCs7cOW2LuSWnxQY0qysdvsZlSb4yTN9pA=

acl:
- id: deny_all
address: 192.168.3.0/24
deny: on # No action specified and deny on implies␣

→˓denial of all actions

- id: key_rule
key: key1 # Access based just on TSIG key
action: [transfer, notify]

zone:
- domain: acl2.example.com
acl: [deny_all, key_rule] # Allow with the TSIG except for the subnet

In the case of dynamic DNS updates, some additional conditions may be specified for more granular filtering. See
more in the section Restricting dynamic updates.

Note: If more conditions (address ranges and/or a key) are given in a single ACL rule, all of them have to be
satisfied for the rule to match.

Tip: In order to restrict regular DNS queries, use module queryacl.

4.4 Secondary (slave) zone

Knot DNS doesn't strictly differ between primary (formerly known as master) and secondary (formerly known
as slave) zones. The only requirement for a secondary zone is to have a master statement set. For effective zone
synchronization, incoming zone change notifications (NOTIFY), which require authorization, can be enabled using
automatic ACL or explicit ACL configuration. Optional transaction authentication (TSIG) is supported for both
zone transfers and zone notifications:

server:
automatic-acl: on # Enabled automatic ACL

key:
- id: xfr_notify_key # Common TSIG key for XFR an NOTIFY
algorithm: hmac-sha256
secret: VFRejzw8h4M7mb0xZKRFiZAfhhd1eDGybjqHr2FV3vc=

remote:
- id: primary
address: [2001:DB8:1::1, 192.168.1.1] # Primary server IP addresses
via: [2001:DB8:2::1, 10.0.0.1] # Local source addresses (optional)
key: xfr_notify_key # TSIG key (optional)

zone:
- domain: example.com
master: primary # Primary remote(s)

4.4. Secondary (slave) zone 9

Knot DNS Documentation, Release 3.4.0

An example of explicit ACL with different TSIG keys for zone transfers and notifications:

key:
- id: notify_key # TSIG key for NOTIFY
algorithm: hmac-sha256
secret: uBbhV4aeSS4fPd+wF2ZIn5pxOMF35xEtdq2ibi2hHEQ=

- id: xfr_key # TSIG key for XFR
algorithm: hmac-sha256
secret: VFRejzw8h4M7mb0xZKRFiZAfhhd1eDGybjqHr2FV3vc=

remote:
- id: primary
address: [2001:DB8:1::1, 192.168.1.1] # Primary server IP addresses
via: [2001:DB8:2::1, 10.0.0.1] # Local source addresses if needed
key: xfr_key # Optional TSIG key

acl:
- id: notify_from_primary # ACL rule for NOTIFY from primary
address: [2001:DB8:1::1, 192.168.1.1] # Primary addresses (optional)
key: notify_key # TSIG key (optional)
action: notify

zone:
- domain: example.com
master: primary # Primary remote(s)
acl: notify_from_primary # Explicit ACL(s)

Note that the master option accepts a list of remotes, which are queried for a zone refresh sequentially in the
specified order. When the server receives a zone change notification from a listed remote, only that remote is used
for a subsequent zone transfer.

Note: When transferring a lot of zones, the server may easily get into a state where all available ports are in the
TIME_WAIT state, thus transfers cease until the operating system closes the ports for good. There are several ways
to work around this:

• Allow reusing of ports in TIME_WAIT (sysctl -w net.ipv4.tcp_tw_reuse=1)

• Shorten TIME_WAIT timeout (tcp_fin_timeout)

• Increase available local port count

4.5 Primary (master) zone

A zone is considered primary if it doesn't have master set. As outgoing zone transfers (XFR) require authoriza-
tion, it must be enabled using automatic ACL or explicit ACL configuration. Outgoing zone change notifications
(NOTIFY) to remotes can be set by configuring notify. Transaction authentication (TSIG) is supported for both
zone transfers and zone notifications:

server:
automatic-acl: on # Enabled automatic ACL

key:
- id: xfr_notify_key # Common TSIG key for XFR an NOTIFY
algorithm: hmac-sha256
secret: VFRejzw8h4M7mb0xZKRFiZAfhhd1eDGybjqHr2FV3vc=

(continues on next page)

4.5. Primary (master) zone 10

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

remote:
- id: secondary
address: [2001:DB8:1::1, 192.168.1.1] # Secondary server IP addresses
via: [2001:DB8:2::1, 10.0.0.1] # Local source addresses (optional)
key: xfr_notify_key # TSIG key (optional)

acl:
- id: local_xfr # Allow XFR to localhost without TSIG
address: [::1, 127.0.0.1]
action: transfer

zone:
- domain: example.com
notify: secondary # Secondary remote(s)
acl: local_xfr # Explicit ACL for local XFR

Note that the notify option accepts a list of remotes, which are all notified sequentially in the specified order.

A secondary zone may serve as a primary zone for a different set of remotes at the same time.

4.6 Dynamic updates

Dynamic updates for the zone are allowed via proper ACL rule with the update action. If the zone is configured
as a secondary and a DNS update message is accepted, the server forwards the message to its first primary master
or ddns-master if configured. The primary master's response is then forwarded back to the originator.

However, if the zone is configured as a primary, the update is accepted and processed:

acl:
- id: update_acl
address: 192.168.3.0/24
action: update

zone:
- domain: example.com.
acl: update_acl

Note: To forward DDNS requests signed with a locally unknown key, an ACL rule for the action update without
a key must be configured for the zone. E.g.:

acl:
- id: fwd_foreign_key
action: update
possible non-key options

zone:
- domain: example.com.
acl: fwd_foreign_key

4.6. Dynamic updates 11

Knot DNS Documentation, Release 3.4.0

4.6.1 Restricting dynamic updates

There are several additional ACL options for dynamic DNS updates which affect the request classification based
on the update contents.

Updates can be restricted to specific resource record types:

acl:
- id: type_rule
action: update
update-type: [A, AAAA, MX] # Updated records must match one of the specified␣

→˓types

Another possibility is restriction on the owner name of updated records. The option update-owner is used to select
the source of domain names which are used for the comparison. And the option update-owner-match specifies the
required relation between the record owner and the reference domain names. Example:

acl:
- id: owner_rule1
action: update
update-owner: name # Updated record owners are restricted by the next␣

→˓conditions
update-owner-match: equal # The record owner must exactly match one name␣

→˓from the next list
update-owner-name: [foo, bar.] # Reference domain names

Note: If the specified owner name is non-FQDN (e.g. foo), it's considered relatively to the effective zone name.
So it can apply to more zones (e.g. foo.example.com. or foo.example.net.). Alternatively, if the name is
FQDN (e.g. bar.), the rule only applies to this name.

If the reference domain name is the zone name, the following variant can be used:

acl:
- id: owner_rule2
action: update
update-owner: zone # The reference name is the zone name
update-owner-match: sub # Any record owner matches except for the zone name␣

→˓itself

template:
- id: default
acl: owner_rule2

zone:
- domain: example.com.
- domain: example.net.

The last variant is for the cases where the reference domain name is a TSIG key name, which must be used for the
transaction security:

key:
- id: example.com # Key names are always considered FQDN
...

- id: steve.example.net
...

- id: jane.example.net
...

(continues on next page)

4.6. Dynamic updates 12

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

acl:
- id: owner_rule3_com
action: update
update-owner: key # The reference name is the TSIG key name
update-owner-match: sub # The record owner must be a subdomain of the key␣

→˓name
key: [example.com] # One common key for updating all non-apex records

- id: owner_rule3_net
action: update
update-owner: key # The reference name is the TSIG key name
update-owner-match: equal # The record owner must exactly match the used key␣

→˓name
key: [steve.example.net, jane.example.net] # Keys for updating specific zone nodes

zone:
- domain: example.com.
acl: owner_rule3_com

- domain: example.net.
acl: owner_rule3_net

4.6.2 Handling CNAME and DNAME-related updates

In general, no RR must exist beside a CNAME or below a DNAME. Whenever such a CNAME or DNAME-related
semantic rule is vialoated by an RR addition in DDNS (this means addition of a CNAME beside an existing record,
addition of another record beside a CNAME, addition of a DNAME above an existing record, addition of another
record below a DNAME), such an RR addition is silently ignored. However, other RRs from the same DDNS
update are processed normally. This is slightly non-compliant with RFC 6672 (in particular, no RR occlusion
takes place).

4.7 Automatic DNSSEC signing

Knot DNS supports automatic DNSSEC signing of zones. The signing can operate in two modes:

1. Automatic key management. In this mode, the server maintains signing keys. New keys are generated ac-
cording to assigned policy and are rolled automatically in a safe manner. No zone operator intervention is
necessary.

2. Manual key management. In this mode, the server maintains zone signatures only. The signatures are kept
up-to-date and signing keys are rolled according to timing parameters assigned to the keys. The keys must
be generated and timing parameters must be assigned by the zone operator.

The DNSSEC signing process maintains some metadata which is stored in the KASP (Key And Signature Policy)
database. This database is backed by LMDB.

Warning: Make sure to set the KASP database permissions correctly. For manual key management, the
database must be readable by the server process. For automatic key management, it must be writeable. If no
HSM is used, the database also contains private key material – don't set the permissions too weak.

4.7. Automatic DNSSEC signing 13

Knot DNS Documentation, Release 3.4.0

4.7.1 Automatic ZSK management

For automatic ZSK management a signing policy has to be configured and assigned to the zone. The policy specifies
how the zone is signed (i.e. signing algorithm, key size, key lifetime, signature lifetime, etc.). If no policy is
specified or the default one is assigned, the default signing parameters are used.

A minimal zone configuration may look as follows:

zone:
- domain: myzone.test
dnssec-signing: on

With a custom signing policy, the policy section will be added:

policy:
- id: custom_policy
signing-threads: 4
algorithm: ECDSAP256SHA256
zsk-lifetime: 60d

zone:
- domain: myzone.test
dnssec-signing: on
dnssec-policy: custom_policy

After configuring the server, reload the changes:

$ knotc reload

The server will generate initial signing keys and sign the zone properly. Check the server logs to see whether
everything went well.

4.7.2 Automatic KSK management

For automatic KSK management, first configure ZSK management like above, and use additional options in policy
section, mostly specifying desired (finite) lifetime for KSK:

remote:
- id: parent_zone_server
address: 192.168.12.1@53

submission:
- id: parent_zone_sbm
parent: [parent_zone_server]

policy:
- id: custom_policy
signing-threads: 4
algorithm: ECDSAP256SHA256
zsk-lifetime: 60d
ksk-lifetime: 365d
ksk-submission: parent_zone_sbm

zone:
- domain: myzone.test
dnssec-signing: on
dnssec-policy: custom_policy

4.7. Automatic DNSSEC signing 14

Knot DNS Documentation, Release 3.4.0

After the initially-generated KSK reaches its lifetime, new KSK is published and after convenience delay the sub-
mission is started. The server publishes CDS and CDNSKEY records and the user shall propagate them to the
parent. The server periodically checks for DS at the parent zone and when positive, finishes the rollover.

Note: As the key timestamp semantics differ between the automatic and manual key management, all key times-
tamps set in the future, either manually or during a key import, are ignorred (cleared).

4.7.3 Manual key management

For automatic DNSSEC signing with manual key management, a signing policy with manual key management flag
has to be set:

policy:
- id: manual
manual: on

zone:
- domain: myzone.test
dnssec-signing: on
dnssec-policy: manual

To generate signing keys, use the keymgr utility. For example, we can use Single-Type Signing:

$ keymgr myzone.test. generate algorithm=ECDSAP256SHA256 ksk=yes zsk=yes

And reload the server. The zone will be signed.

To perform a manual rollover of a key, the timing parameters of the key need to be set. Let's roll the key. Generate
a new key, but do not activate it yet:

$ keymgr myzone.test. generate algorithm=ECDSAP256SHA256 ksk=yes zsk=yes active=+1d

Take the key ID (or key tag) of the old key and disable it the same time the new key gets activated:

$ keymgr myzone.test. set <old_key_id> retire=+2d remove=+3d

Reload the server again. The new key will be published (i.e. the DNSKEY record will be added into the zone).
Remember to update the DS record in the parent zone to include a reference to the new key. This must happen
within one day (in this case) including a delay required to propagate the new DS to caches.

4.7.4 Zone signing

The signing process consists of the following steps:

1. Processing KASP database events. (e.g. performing a step of a rollover).

2. Updating the DNSKEY records. The whole DNSKEY set in zone apex is replaced by the keys from the KASP
database. Note that keys added into the zone file manually will be removed. To add an extra DNSKEY record
into the set, the key must be imported into the KASP database (possibly deactivated).

3. Fixing the NSEC or NSEC3 chain.

4. Removing expired signatures, invalid signatures, signatures expiring in a short time, and signatures issued
by an unknown key.

5. Creating missing signatures. Unless the Single-Type Signing Scheme is used, DNSKEY records in a zone
apex are signed by KSK keys and all other records are signed by ZSK keys.

6. Updating and re-signing SOA record.

4.7. Automatic DNSSEC signing 15

Knot DNS Documentation, Release 3.4.0

The signing is initiated on the following occasions:

• Start of the server

• Zone reload

• Reaching the signature refresh period

• Key set changed due to rollover event

• NSEC3 salt is changed

• Received DDNS update

• Forced zone re-sign via server control interface

On a forced zone re-sign, all signatures in the zone are dropped and recreated.

The knotc zone-status command can be used to see when the next scheduled DNSSEC re-sign will happen.

4.7.5 On-secondary (on-slave) signing

It is possible to enable automatic DNSSEC zone signing even on a secondary server. If enabled, the zone is signed
after every AXFR/IXFR transfer from primary, so that the secondary always serves a signed up-to-date version of
the zone.

It is strongly recommended to block any outside access to the primary server, so that only the secondary server's
signed version of the zone is served.

Enabled on-secondary signing introduces events when the secondary zone changes while the primary zone remains
unchanged, such as a key rollover or refreshing of RRSIG records, which cause inequality of zone SOA serial
between primary and secondary. The secondary server handles this by saving the primary's SOA serial in a special
variable inside KASP DB and appropriately modifying AXFR/IXFR queries/answers to keep the communication
with primary server consistent while applying the changes with a different serial.

4.8 Catalog zones

Catalog zones (RFC 9432) are a concept whereby a list of zones to be configured is maintained as contents of a
separate, special zone. This approach has the benefit of simple propagation of a zone list to secondary servers,
especially when the list is frequently updated.

Terminology first. Catalog zone is a meta-zone which shall not be a part of the DNS tree, but it contains information
about the set of member zones and is transferable to secondary servers using common AXFR/IXFR techniques. A
catalog-member zone (or just member zone) is a zone based on information from the catalog zone and not from
configuration file/database. Member properties are some additional information related to each member zone, also
distributed with the catalog zone.

A catalog zone is handled almost in the same way as a regular zone: It can be configured using all the stan-
dard options (but for example DNSSEC signing is useless as the zone won't be queried by clients), including
primary/secondary configuration and ACLs. A catalog zone is indicated by setting the option catalog-role. Stan-
dard DNS queries to a catalog zone are answered with REFUSED as though the zone doesn't exist unless there
is a matching ACL rule for action transfer configured. The name of the catalog zone is arbitrary. It's possible to
configure multiple catalog zones.

Warning: Don't choose a name for a catalog zone below a name of any other existing zones configured on the
server as it would effectively "shadow" part of your DNS subtree.

Upon catalog zone (re)load or change, all the PTR records in the format unique-id.zones.catalog. 0 IN
PTR member.com. (but not too.deep.zones.catalog.!) are processed and member zones created, with zone
names taken from the PTR records' RData, and zone settings taken from the configuration templates specified by
catalog-template.

4.8. Catalog zones 16

https://datatracker.ietf.org/doc/html/rfc9432.html

Knot DNS Documentation, Release 3.4.0

The owner names of the PTR records shall follow this scheme:

<unique-id>.zones.<catalog-zone>.

where the mentioned labels shall match:

• <unique-id> — Single label that is recommended to be unique among member zones.

• zones — Required label.

• <catalog-zone> — Name of the catalog zone.

Additionally, records in the format group.unique-id.zones.catalog. 0 IN TXT "conf-template" are
processed as a definition of the member's group property. The unique-id must match the one of the PTR record
defining the member. It's required that at most one group is defined for each member. If multiple groups are
defined, one group is picked at random.

All other records and other member properties are ignored. They remain in the catalog zone, however, and might
be for example transferred to a secondary server, which may interpret catalog zones differently. SOA still needs to
be present in the catalog zone and its serial handled appropriately. An apex NS record must be present as for any
other zone. The version record version 0 IN TXT "2" is required at the catalog zone apex.

A catalog zone may be modified using any standard means (e.g. AXFR/IXFR, DDNS, zone file reload). In the
case of incremental change, only affected member zones are reloaded.

The catalog zone must have at least one catalog-template configured. The configuration for any defined member
zone is taken from its group property value, which should match some catalog-template name. If the group property
is not defined for a member, is empty, or doesn't match any of defined catalog-template names, the first catalog-
template (in the order from configuration) is used. Nesting of catalog zones isn't supported.

Any de-cataloged member zone is purged immediately, including its zone file, journal, timers, and DNSSEC keys.
The zone file is not deleted if zonefile-sync is set to -1 for member zones. Any member zone, whose PTR record's
owner has been changed, is purged immediately if and only if the <unique-id> has been changed.

When setting up catalog zones, it might be useful to set catalog-db and catalog-db-max-size to non-default values.

Note: Whenever a catalog zone is updated, the server reloads itself with all configured zones, including possibly
existing other catalog zones. It's similar to calling knotc zone-reload (for all zones). The consequence is that new
zone files might be discovered and reloaded, even for zones that do not relate to updated catalog zone.

Catalog zones never expire automatically, regardless of what is declared in the catalog zone SOA. However, a
catalog zone can be expired manually at any time using knotc -f zone-purge +expire.

Currently, expiration of a catalog zone doesn't have any effect on its member zones.

Warning: The server does not work well if one member zone appears in two catalog zones concurrently. The
user is encouraged to avoid this situation whatsoever. Thus, there is no way a member zone can be migrated
from one catalog to another while preserving its metadata. Following steps may be used as a workaround:

• Back up the member zone's metadata (on each server separately).

• Remove the member zone from the catalog it's a member of.

• Wait for the catalog zone to be propagated to all servers.

• Add the member zone to the other catalog.

• Restore the backed up metadata (on each server separately).

4.8. Catalog zones 17

Knot DNS Documentation, Release 3.4.0

4.8.1 Catalog zones configuration examples

Below are configuration snippets (e.g. server and log sections missing) of very simple catalog zone setups, in order
to illustrate the relations between catalog-related configuration options.

First setup represents a very simple scenario where the primary is the catalog zone generator and the secondary is
the catalog zone consumer.

Primary configuration:

acl:
- id: slave_xfr
address: ...
action: transfer

template:
- id: mmemb
catalog-role: member
catalog-zone: catz.
acl: slave_xfr

zone:
- domain: catz.
catalog-role: generate
acl: slave_xfr

- domain: foo.com.
template: mmemb

- domain: bar.com.
template: mmemb

Secondary configuration:

acl:
- id: master_notify
address: ...
action: notify

template:
- id: smemb
master: master
acl: master_notify

zone:
- domain: catz.
master: master
acl: master_notify
catalog-role: interpret
catalog-template: smemb

When new zones are added (or removed) to the primary configuration with assigned mmemb template, they will
automatically propagate to the secondary and have the smemb template assigned there.

Second example is with a hand-written (or script-generated) catalog zone, while employing configuration groups:

catz. 0 SOA invalid. invalid. 1625079950 3600 600␣
→˓2147483646 0
catz. 0 NS invalid.

(continues on next page)

4.8. Catalog zones 18

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

version.catz. 0 TXT "2"
nj2xg5bnmz2w4ltd.zones.catz. 0 PTR just-fun.com.
group.nj2xg5bnmz2w4ltd.zones.catz. 0 TXT unsigned
nvxxezjnmz2w4ltd.zones.catz. 0 PTR more-fun.com.
group.nvxxezjnmz2w4ltd.zones.catz. 0 TXT unsigned
nfwxa33sorqw45bo.zones.catz. 0 PTR important.com.
group.nfwxa33sorqw45bo.zones.catz. 0 TXT signed
mjqw42zomnxw2lq0.zones.catz. 0 PTR bank.com.
group.mjqw42zomnxw2lq0.zones.catz. 0 TXT signed

And the server in this case is configured to distinguish the groups by applying different templates:

template:
- id: unsigned
...

- id: signed
dnssec-signing: on
dnssec-policy: ...
...

zone:
- domain: catz.
file: ...
catalog-role: interpret
catalog-template: [unsigned, signed]

4.9 DNS over QUIC

QUIC is a low-latency, encrypted, internet transport protocol. Knot DNS supports DNS over QUIC (DoQ) (RFC
9250), including zone transfers (XoQ). By default, the UDP port 853 is used for DNS over QUIC.

To use QUIC, a server private key and a certificate must be available. If no key is configured, the server automati-
cally generates one with a self-signed temporary certificate. The key is stored in the KASP database directory for
persistence across restarts.

In order to listen for incoming requests over QUIC, at least one interface or XDP interface must be configured.

An example of configuration of listening for DNS over QUIC on the loopback interface:

server:
listen-quic: ::1

When the server is started, it logs some interface details and public key pin of the used certificate:

... info: binding to QUIC interface ::1@853

... info: QUIC/TLS, certificate public key 0xtdayWpnJh4Py8goi8cei/
→˓gXGD4kJQ+HEqcxS++DBw=

Tip: The public key pin, which isn't secret, can also be displayed via:

$ knotc status cert-key
0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

Or from the keyfile via:

4.9. DNS over QUIC 19

https://datatracker.ietf.org/doc/html/rfc9250.html
https://datatracker.ietf.org/doc/html/rfc9250.html

Knot DNS Documentation, Release 3.4.0

$ certtool --infile=quic_key.pem -k | grep pin-sha256
pin-sha256:0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

Using kdig we can verify that the server responds over QUIC:

$ kdig @::1 ch txt version.server +quic
;; QUIC session (QUICv1)-(TLS1.3)-(ECDHE-X25519)-(EdDSA-Ed25519)-(AES-256-GCM)
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 0
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 1

;; EDNS PSEUDOSECTION:
;; Version: 0; flags: ; UDP size: 1232 B; ext-rcode: NOERROR
;; PADDING: 370 B

;; QUESTION SECTION:
;; version.server. CH TXT

;; ANSWER SECTION:
version.server. 0 CH TXT "Knot DNS 3.4.0"

;; Received 468 B
;; Time 2024-06-21 08:30:12 CEST
;; From ::1@853(QUIC) in 1.1 ms

In this case, opportunistic authentication was used, which doesn't guarantee that the client communicates with
the genuine server and vice versa. For strict authentication of the server, we can enforce certificate key pin check
by specifying it (enabled debug mode for details):

$ kdig @::1 ch txt version.server +tls-pin=0xtdayWpnJh4Py8goi8cei/
→˓gXGD4kJQ+HEqcxS++DBw= +quic -d
;; DEBUG: Querying for owner(version.server.), class(3), type(16), server(::1),␣
→˓port(853), protocol(UDP)
;; DEBUG: TLS, received certificate hierarchy:
;; DEBUG: #1, CN=tester
;; DEBUG: SHA-256 PIN: 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=, MATCH
;; DEBUG: TLS, skipping certificate verification
;; QUIC session (QUICv1)-(TLS1.3)-(ECDHE-X25519)-(EdDSA-Ed25519)-(AES-256-GCM)
...

We see that a server certificate key matches the specified pin. Another possibility is to use certificate chain valida-
tion if a suitable certificate is configured on the server.

4.9. DNS over QUIC 20

https://datatracker.ietf.org/doc/html/rfc9103.html#section-9.3.1
https://datatracker.ietf.org/doc/html/rfc9103.html#section-9.3.2

Knot DNS Documentation, Release 3.4.0

4.9.1 Zone transfers

For outgoing requests (e.g. NOTIFY and refresh), Knot DNS utilizes session resumption, which speeds up QUIC
connection establishment.

Here are a few examples of zone transfer configurations using various authentication mechanisms:

Opportunistic authentication:

Primary and secondary can authenticate using TSIG. Fallback to clear-text DNS isn't supported.

Primary:

server:
listen-quic: ::1
automatic-acl: on

key:
- id: xfr_key
algorithm: hmac-sha256
secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
- id: secondary
address: ::2
key: xfr_key # TSIG for secondary authentication
quic: on

zone:
- domain: example.com
notify: secondary

Secondary:

server:
listen-quic: ::2
automatic-acl: on

key:
- id: xfr_key
algorithm: hmac-sha256
secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
- id: primary
address: ::1
key: xfr_key # TSIG for primary authentication
quic: on

zone:
- domain: example.com
master: primary

4.9. DNS over QUIC 21

https://datatracker.ietf.org/doc/html/rfc9250.html#section-5.5.3
https://datatracker.ietf.org/doc/html/rfc9103.html#section-9

Knot DNS Documentation, Release 3.4.0

Strict authentication:

Note that the automatic ACL doesn't work in this case due to asymmetrical configuration. The secondary can
authenticate using TSIG.

Primary:

server:
listen-quic: ::1

key:
- id: secondary_key
algorithm: hmac-sha256
secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
- id: secondary
address: ::2
quic: on

acl:
- id: secondary_xfr
address: ::2
key: secondary_key # TSIG for secondary authentication
action: transfer

zone:
- domain: example.com
notify: secondary
acl: secondary_xfr

Secondary:

server:
listen-quic: ::2

key:
- id: secondary_key
algorithm: hmac-sha256
secret: S059OFJv1SCDdR2P6JKENgWaM409iq2X44igcJdERhc=

remote:
- id: primary
address: ::1
key: secondary_key # TSIG for secondary authentication
quic: on

acl:
- id: primary_notify
address: ::1
cert-key: 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=
action: notify

zone:
- domain: example.com
master: primary
acl: primary_notify

4.9. DNS over QUIC 22

Knot DNS Documentation, Release 3.4.0

Mutual authentication:

The mutual authentication guarantees authentication for both the primary and the secondary. In this case, TSIG
would be redundant. This mode is recommended if possible.

Primary:

server:
listen-quic: ::1
automatic-acl: on

remote:
- id: secondary
address: ::2
quic: on
cert-key: PXqv7/lXn6N7scg/KJWvfU/TEPe5BoIUHQGRLMPr6YQ=

zone:
- domain: example.com
notify: secondary

Secondary:

server:
listen-quic: ::2
automatic-acl: on

remote:
- id: primary
address: ::1
quic: on
cert-key: 0xtdayWpnJh4Py8goi8cei/gXGD4kJQ+HEqcxS++DBw=

zone:
- domain: example.com
master: primary

Note: Instead of certificate verification with specified authentication domain name, Knot DNS uses certificate
public key pinning. This approach has much lower overhead and in most cases simplifies configuration and certifi-
cate management.

4.10 DNS over TLS

TLS is an encrypted internet transport protocol. Knot DNS supports DNS over TLS (DoT) (RFC 7858), including
zone transfers (XoT). By default, the TCP port 853 is used for DNS over TLS.

There are the same requirements for TLS key and certificate as for DNS over QUIC.

In order to listen for incoming requests over TLS, interface must be configured.

An example of configuration of listening for DNS over TLS on the loopback interface:

server:
listen-tls: ::1

When the server is started, it logs some interface details and public key pin of the used certificate:

4.10. DNS over TLS 23

https://datatracker.ietf.org/doc/html/rfc9103.html#section-9.3.3
https://datatracker.ietf.org/doc/html/rfc7858.html

Knot DNS Documentation, Release 3.4.0

... info: binding to TLS interface ::1@853

... info: QUIC/TLS, certificate public key 0xtdayWpnJh4Py8goi8cei/
→˓gXGD4kJQ+HEqcxS++DBw=

Using kdig we can verify that the server responds over TLS:

$ kdig @::1 ch txt version.server +tls
;; TLS session (TLS1.3)-(ECDHE-X25519)-(EdDSA-Ed25519)-(AES-256-GCM)
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 0
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 1

;; EDNS PSEUDOSECTION:
;; Version: 0; flags: ; UDP size: 1232 B; ext-rcode: NOERROR
;; PADDING: 370 B

;; QUESTION SECTION:
;; version.server. CH TXT

;; ANSWER SECTION:
version.server. 0 CH TXT "Knot DNS 3.4.0"

;; Received 468 B
;; Time 2024-06-21 08:31:13 CEST
;; From ::1@853(TLS) in 9.1 ms

Zone transfer configuration and authentication profiles are almost identical to DNS over QUIC, with the only
difference being the enabling of tls for the corresponding remotes.

4.11 Query modules

Knot DNS supports configurable query modules that can alter the way queries are processed. Each query requires
a finite number of steps to be resolved. We call this set of steps a query plan, an abstraction that groups these steps
into several stages.

• Before-query processing

• Answer, Authority, Additional records packet sections processing

• After-query processing

For example, processing an Internet-class query needs to find an answer. Then based on the previous state, it may
also append an authority SOA or provide additional records. Each of these actions represents a 'processing step'.
Now, if a query module is loaded for a zone, it is provided with an implicit query plan which can be extended by
the module or even changed altogether.

A module is active if its name, which includes the mod- prefix, is assigned to the zone/template module option
or to the default template global-module option if activating for all queries. If the module is configurable, a
corresponding module section with an identifier must be created and then referenced in the form of module_name/
module_id. See Modules for the list of available modules.

The same module can be specified multiple times, such as a global module and a per-zone module, or with different
configurations. However, not all modules are intended for this, for example, mod-cookies! Global modules are
executed before per-zone modules.

Note: Query modules are processed in the order they are specified in the zone/template configuration. In most
cases, the recommended order is:

mod-synthrecord, mod-onlinesign, mod-cookies, mod-rrl, mod-dnstap, mod-stats

4.11. Query modules 24

Knot DNS Documentation, Release 3.4.0

4.12 Performance Tuning

4.12.1 Numbers of Workers

There are three types of workers ready for parallel execution of performance-oriented tasks: UDP workers, TCP
workers, and Background workers. The first two types handle all network requests via the UDP and TCP protocol
(respectively) and do the response jobs for common queries. Background workers process changes to the zone.

By default, Knot determines a well-fitting number of workers based on the number of CPU cores. The user can spec-
ify the number of workers for each type with configuration/server section: udp-workers, tcp-workers, background-
workers.

An indication of when to increase the number of workers is when the server is lagging behind expected performance,
while CPU usage remains low. This is usually due to waiting for network or I/O response during the operation. It
may be caused by Knot design not fitting the use-case well. The user should try increasing the number of workers
(of the related type) slightly above 100 and if the performance improves, decide a further, exact setting.

4.12.2 Number of available file descriptors

A name server configured for a large number of zones (hundreds or more) needs enough file descriptors available
for zone transfers and zone file updates, which default OS settings often don't provide. It's necessary to check with
the OS configuration and documentation and ensure the number of file descriptors (sometimes called a number
of concurrently open files) effective for the knotd process is set suitably high. The number of concurrently open
incoming TCP connections must be taken into account too. In other words, the required setting is affected by the
tcp-max-clients setting.

4.12.3 Sysctl and NIC optimizations

There are several recommendations based on Knot developers' experience with their specific HW and SW (main-
stream Intel-based servers, Debian-based GNU/Linux distribution). They may improve or impact performance in
common use cases.

If your NIC driver allows it (see /proc/interrupts for hint), set CPU affinity (/proc/irq/$IRQ/smp_affinity) manually
so that each NIC channel is served by unique CPU core(s). You must turn off irqbalance service in advance to
avoid configuration override.

Configure sysctl as follows:

socket_bufsize=1048576
busy_latency=0
backlog=40000
optmem_max=20480

net.core.wmem_max = $socket_bufsize
net.core.wmem_default = $socket_bufsize
net.core.rmem_max = $socket_bufsize
net.core.rmem_default = $socket_bufsize
net.core.busy_read = $busy_latency
net.core.busy_poll = $busy_latency
net.core.netdev_max_backlog = $backlog
net.core.optmem_max = $optmem_max

Disable huge pages.

4.12. Performance Tuning 25

Knot DNS Documentation, Release 3.4.0

Configure your CPU to "performance" mode. This can be achieved depending on architecture, e.g. in BIOS, or
e.g. configuring /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor to "performance".

Tune your NIC device with ethtool:

ethtool -A $dev autoneg off rx off tx off
ethtool -K $dev tso off gro off ufo off
ethtool -G $dev rx 4096 tx 4096
ethtool -C $dev rx-usecs 75
ethtool -C $dev tx-usecs 75
ethtool -N $dev rx-flow-hash udp4 sdfn
ethtool -N $dev rx-flow-hash udp6 sdfn

On FreeBSD you can just:

ifconfig ${dev} -rxcsum -txcsum -lro -tso

Knot developers are open to hear about users' further suggestions about network devices tuning/optimization.

4.12. Performance Tuning 26

CHAPTER

FIVE

OPERATION

The Knot DNS server part knotd can run either in the foreground, or in the background using the -d option. When
run in the foreground, it doesn't create a PID file. Other than that, there are no differences and you can control both
the same way.

The tool knotc is designed as a user front-end, making it easier to control a running server daemon. If you want to
control the daemon directly, use SIGINT to quit the process or SIGHUP to reload the configuration.

If you pass neither configuration file (-c parameter) nor configuration database (-C parameter), the server will first
attempt to use the default configuration database stored in /var/lib/knot/confdb or the default configuration
file stored in /etc/knot/knot.conf. Both the default paths can be reconfigured with --with-storage=path
or --with-configdir=path respectively.

Example of server start as a daemon:

$ knotd -d -c knot.conf

Example of server shutdown:

$ knotc -c knot.conf stop

For a complete list of actions refer to the program help (-h parameter) or to the corresponding manual page.

Also, the server needs to create rundir and storage directories in order to run properly.

Note: Avoid editing of or other manipulation with configuration file during start or reload of knotd or start of
knotc and other utilities which use it. There is a risk of malfunction or a crash otherwise.

5.1 Configuration database

In the case of a huge configuration file, the configuration can be stored in a binary database. Such a database can
be simply initialized:

$ knotc conf-init

or preloaded from a file:

$ knotc conf-import input.conf

Also the configuration database can be exported into a textual file:

$ knotc conf-export output.conf

27

Knot DNS Documentation, Release 3.4.0

Warning: The import and export commands access the configuration database directly, without any interaction
with the server. Therefore, any data not yet committed to the database won't be exported. And the server won't
reflect imported configuration correctly. So it is strictly recommended to import new configuration when the
server is not running.

5.2 Dynamic configuration

The configuration database can be accessed using the server control interface while the server is running. To get the
full power of the dynamic configuration, the server must be started with a specified configuration database location
or with the default database initialized. Otherwise all the changes to the configuration will be temporary (until the
server is stopped).

Note: The database can be imported in advance.

Most of the commands get an item name and value parameters. The item name is in the form of
section[identifier].name. If the item is multivalued, more values can be specified as individual (command
line) arguments.

Caution: Beware of the possibility of pathname expansion by the shell. For this reason, it is advisable to
escape (with backslash) square brackets or to quote command parameters if not executed in the interactive
mode.

To get the list of configuration sections or to get the list of section items:

$ knotc conf-list
$ knotc conf-list 'server'

To get the whole configuration or to get the whole configuration section or to get all section identifiers or to get a
specific configuration item:

$ knotc conf-read
$ knotc conf-read 'remote'
$ knotc conf-read 'zone.domain'
$ knotc conf-read 'zone[example.com].master'

Warning: The following operations don't work on OpenBSD!

Modifying operations require an active configuration database transaction. Just one transaction can be active at a
time. Such a transaction then can be aborted or committed. A semantic check is executed automatically before
every commit:

$ knotc conf-begin
$ knotc conf-abort
$ knotc conf-commit

To set a configuration item value or to add more values or to add a new section identifier or to add a value to all
identified sections:

$ knotc conf-set 'server.identity' 'Knot DNS'
$ knotc conf-set 'server.listen' '0.0.0.0@53' '::@53'

(continues on next page)

5.2. Dynamic configuration 28

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

$ knotc conf-set 'zone[example.com]'
$ knotc conf-set 'zone.slave' 'slave2'

Note: Also the include operation can be performed. A non-absolute file location is relative to the server binary
path, not to the control binary path!

$ knotc conf-set 'include' '/tmp/new_zones.conf'

To unset the whole configuration or to unset the whole configuration section or to unset an identified section or to
unset an item or to unset a specific item value:

$ knotc conf-unset
$ knotc conf-unset 'zone'
$ knotc conf-unset 'zone[example.com]'
$ knotc conf-unset 'zone[example.com].master'
$ knotc conf-unset 'zone[example.com].master' 'remote2' 'remote5'

To get the change between the current configuration and the active transaction for the whole configuration or for a
specific section or for a specific identified section or for a specific item:

$ knotc conf-diff
$ knotc conf-diff 'zone'
$ knotc conf-diff 'zone[example.com]'
$ knotc conf-diff 'zone[example.com].master'

Caution: While it is possible to change most of the configuration parameters dynamically or via configuration
file reload, a few of the parameters in the section server require restarting the server, such that the changes
take effect. These parameters are: rundir, user, pidfile, tcp-reuseport, udp-workers, tcp-workers, background-
workers, and listen.

An example of possible configuration initialization:

$ knotc conf-begin
$ knotc conf-set 'server.listen' '0.0.0.0@53' '::@53'
$ knotc conf-set 'remote[master_server]'
$ knotc conf-set 'remote[master_server].address' '192.168.1.1'
$ knotc conf-set 'template[default]'
$ knotc conf-set 'template[default].storage' '/var/lib/knot/zones/'
$ knotc conf-set 'template[default].master' 'master_server'
$ knotc conf-set 'zone[example.com]'
$ knotc conf-diff
$ knotc conf-commit

5.2. Dynamic configuration 29

Knot DNS Documentation, Release 3.4.0

5.3 Secondary (slave) mode

Running the server as a secondary is very straightforward as the zone is transfered automatically from a remote
server. The received zone is usually stored in a zone file after the zonefile-sync period elapses. Zone differences
are stored in the zone journal.

5.4 Primary (master) mode

If you just want to check the zone files before starting, you can use:

$ knotc zone-check example.com

5.5 Reading and editing zones

Knot DNS allows you to read or change zone contents online using the server control interface.

Warning: Avoid concurrent zone access from a third party software when a zone event (zone file load, refresh,
DNSSEC signing, dynamic update) is in progress or pending. In such a case, zone events must be frozen before.
For more information on how to freeze the zone read Reading and editing the zone file safely.

To get contents of all configured zones, or a specific zone contents, or zone records with a specific owner, or even
with a specific record type:

$ knotc zone-read --
$ knotc zone-read example.com
$ knotc zone-read example.com ns1
$ knotc zone-read example.com ns1 NS

Note: If the record owner is not a fully qualified domain name, then it is considered as a relative name to the zone
name.

To start a writing transaction on all zones or on specific zones:

$ knotc zone-begin --
$ knotc zone-begin example.com example.net

Now you can list all nodes within the transaction using the zone-get command, which always returns current data
with all changes included. The command has the same syntax as zone-read.

Within the transaction, you can add a record to a specific zone or to all zones with an open transaction:

$ knotc zone-set example.com ns1 3600 A 192.168.0.1
$ knotc zone-set -- ns1 3600 A 192.168.0.1

To remove all records with a specific owner, or a specific rrset, or specific record data:

$ knotc zone-unset example.com ns1
$ knotc zone-unset example.com ns1 A
$ knotc zone-unset example.com ns1 A 192.168.0.2

To see the difference between the original zone and the current version:

5.3. Secondary (slave) mode 30

Knot DNS Documentation, Release 3.4.0

$ knotc zone-diff example.com

Finally, either commit or abort your transaction:

$ knotc zone-commit example.com
$ knotc zone-abort example.com

A full example of setting up a completely new zone from scratch:

$ knotc conf-begin
$ knotc conf-set zone.domain example.com
$ knotc conf-commit
$ knotc zone-begin example.com
$ knotc zone-set example.com @ 3600 SOA ns admin 1 86400 900 691200 3600
$ knotc zone-set example.com @ 3600 NS ns
$ knotc zone-set example.com ns 3600 A 192.168.0.1
$ knotc zone-set example.com ns 3600 AAAA 2001:DB8::1
$ knotc zone-commit example.com

Note: If quotes are necessary for record data specification, remember to escape them:

$ knotc zone-set example.com @ 3600 TXT \"v=spf1 a:mail.example.com -all\"

5.6 Reading and editing the zone file safely

It's always possible to read and edit zone contents via zone file manipulation. It may lead to confusion or even a
program crash, however, if the zone contents are continuously being changed by DDNS, DNSSEC signing and the
like. In such a case, the safe way to modify the zone file is to freeze zone events first:

$ knotc -b zone-freeze example.com.
$ knotc -b zone-flush example.com.

After calling freeze on the zone, there still may be running zone operations (e.g. signing), causing freeze pending.
Because of this, the blocking mode is used to ensure the operation was finished. Then the zone can be flushed to a
file.

Now the zone file can be safely modified (e.g. using a text editor). If zonefile-load is not set to difference-no-serial,
it's also necessary to increase SOA serial in this step to keep consistency. Finally, we can load the modified zone
file and if successful, thaw the zone:

$ knotc -b zone-reload example.com.
$ knotc zone-thaw example.com.

5.7 Zone loading

The process of how the server loads a zone is influenced by the configuration of the zonefile-load and journal-
content parameters (also DNSSEC signing applies), the existence of a zone file and journal (and their relative
out-of-dateness), and whether it is a cold start of the server or a zone reload (e.g. invoked by the knotc interface).
Please note that zone transfers are not taken into account here – they are planned after the zone is loaded (including
zone bootstrap).

If the zone file exists and is not excluded by the configuration, it is first loaded and according to its SOA serial
number, relevant journal changesets are applied. If this is a zone reload and we have zonefile-load set to difference,

5.6. Reading and editing the zone file safely 31

Knot DNS Documentation, Release 3.4.0

the difference between old and new contents is computed and stored in the journal like an update. The zone file
should be either unchanged since last load or changed with incremented SOA serial. In the case of a decreased
SOA serial, the load is interrupted with an error; if unchanged, it is increased by the server.

If the procedure described above succeeds without errors, the resulting zone contents are (after potential DNSSEC
signing) used as the new zone.

The option journal-content set to all lets the server, beside better performance, keep track of the zone contents also
across server restarts. It makes the cold start effectively work like a zone reload with the old contents loaded from
the journal (unless this is the very first start with the zone not yet saved into the journal).

5.8 Journal behaviour

The zone journal keeps some history of changes made to the zone. It is useful for responding to IXFR queries.
Also if zone file flush is disabled, the journal keeps the difference between the zone file and the current zone in
case of server shutdown. The history is stored in changesets – differences of zone contents between two (usually
subsequent) zone versions (specified by SOA serials).

Journals of all zones are stored in a common LMDB database. Huge changesets are split into 15-70 KiB1 blocks
to prevent fragmentation of the DB. The journal does each operation in one transaction to keep consistency of the
DB and performance.

Each zone journal has its own occupation limits maximum usage and maximum depth. Changesets are stored in the
journal one by one. When hitting any of the limits, the zone is flushed into the zone file if there are no redundant
changesets to delete, and the oldest changesets are deleted. In the case of the size limit, twice1 the needed amount
of space is purged to prevent overly frequent deletes.

If zone file flush is disabled, then instead of flushing the zone, the journal tries to save space by merging the
changesets into a special one. This approach is effective if the changes rewrite each other, e.g. periodically changing
the same zone records, re-signing the whole zone etc. Thus the difference between the zone file and the zone is
still preserved even if the journal deletes some older changesets.

If the journal is used to store both zone history and contents, a special changeset is present with zone contents.
When the journal gets full, the changes are merged into this special changeset.

There is also a safety hard limit for overall journal database size, but it's strongly recommended to set the per-zone
limits in a way to prevent hitting this one. For LMDB, it's hard to recover from the database-full state. For wiping
one zone's journal, see knotc zone-purge +journal command.

5.9 Handling zone file, journal, changes, serials

Some configuration options regarding the zone file and journal, together with operation procedures, might lead to
unexpected results. This chapter points out potential interference and both recommends and warns before some
combinations thereof. Unfortunately, there is no optimal combination of configuration options, every approach has
some disadvantages.

1 This constant is hardcoded.

5.8. Journal behaviour 32

Knot DNS Documentation, Release 3.4.0

5.9.1 Example 1

Keep the zone file updated:

zonefile-sync: 0
zonefile-load: whole
journal-content: changes

These are default values. The user can always check the current zone contents in the zone file, and also modify it
(recommended with server turned-off or taking the safe way). The journal serves here just as a source of history
for secondary servers' IXFR. Some users dislike that the server overwrites their prettily prepared zone file.

5.9.2 Example 2

Zonefileless setup:

zonefile-sync: -1
zonefile-load: none
journal-content: all

Zone contents are stored only in the journal. The zone is updated by DDNS, zone transfer, or via the control
interface. The user might have filled the zone contents initially from a zone file by setting zonefile-load to whole
temporarily. It's also a good setup for secondary servers. Anyway, it's recommended to carefully tune the journal-
size-related options to avoid surprises like the journal getting full (see Journal behaviour).

5.9.3 Example 3

Input-only zone file:

zonefile-sync: -1
zonefile-load: difference
journal-content: changes

The user can make changes to the zone by editing the zone file, and his pretty zone file is never overwritten or filled
with DNSSEC-related autogenerated records – they are only stored in the journal.

Warning: The zone file's SOA serial must be properly set to a number which is higher than the current SOA
serial in the zone (not in the zone file) if manually updated! This is important to ensure consistency of the
journal and outgoing IXFR.

Note: This mode is not suitable if the zone can be modified externally (e.g. DDNS, knotc).

5.9.4 Example 4

Auto-increment SOA serial:

zonefile-sync: -1
zonefile-load: difference-no-serial
journal-content: all

This is similar to the previous setup, but the SOA serial is handled by the server automatically. So the user no
longer needs to care about it in the zone file.

5.9. Handling zone file, journal, changes, serials 33

Knot DNS Documentation, Release 3.4.0

However, this requires setting journal-content to all so that the information about the last real SOA serial is pre-
served in case of server re-start. The sizing of journal limits needs to be taken into consideration (see Journal
behaviour).

Note: This mode is not suitable if the zone can be modified externally (e.g. DDNS, knotc).

5.10 Zone bootstrapping on secondary

When zone refresh from the primary fails, the retry value from SOA is used as the interval between refresh
attempts. In a case that SOA isn't known to the secondary (either because the zone hasn't been retrieved from the
primary yet, or the zone has expired), a backoff is used for repeated retry attempts.

With every retry, the delay rises as a quadratic polynomial (5 * n^2, where n represents the sequence number of
the retry attempt) up to two hours, each time with a random delay of 0 to 30 seconds added to spread the load on
the primary. In each attempt, the retry interval is subject to retry-min-interval and retry-max-interval.

Until the refresh has been successfully completed, the backoff is restarted from the beginning by ev-
ery zone-refresh or zone-retransfer of the zone triggered manually via knotc, by zone-purge or
zone-restore of the zone's timers, or by a restart of knotd.

5.11 Zone expiration

On a primary, zone normally never expires. On a secondary, zone expiration results in removal of the current
zone contents and a trigger of immediate zone refresh. The zone file and zone's journal are kept, but not used for
answering requests until the refresh is successfully completed.

The zone expire timer is set according to the zone's SOA expire field. In addition to it, Knot DNS also supports
EDNS EXPIRE extension of the expire timer in both primary and secondary roles as described in RFC 7314.

When Knot DNS is configured as a secondary, EDNS EXPIRE option present in a SOA, IXFR, or AFXR response
from the primary is processed and used to update the zone timer when necessary. This functionality (together
with requests of any other EDNS options) for a specified primary may be disabled using the no-edns configuration
parameter.

If it's necessary, any zone may be expired manually using the zone-purge command of the knotc utility. Manual
expiration is applicable to any zone, including a catalog zone or a zone on a primary. Beware, a manually expired
zone on a primary or a manually expired catalog zone becomes valid again after a server configuration is reloaded
or the knotd process is restarted, provided that the zone data hasn't been removed.

5.12 DNSSEC key states

During its lifetime, a DNSSEC key finds itself in different states. Most of the time it is used for signing the zone
and published in the zone. In order to exchange the key, one type of a key rollover is necessary, and during this
rollover, the key goes through various states with respect to the rollover type and also the state of the other key
being rolled-over.

First, let's list the states of the key being rolled-in.

Standard states:

• active — The key is used for signing.

• published — The key is published in the zone, but not used for signing. If the key is a KSK or CSK, it is
used for signing the DNSKEY RRSet.

• ready (only for KSK) — The key is published in the zone and used for signing. The old key is still active,
since we are waiting for the DS records in the parent zone to be updated (i.e. "KSK submission").

5.10. Zone bootstrapping on secondary 34

https://datatracker.ietf.org/doc/html/rfc7314.html

Knot DNS Documentation, Release 3.4.0

Special states for algorithm rollover:

• pre-active — The key is not yet published in the zone, but it's used for signing the zone.

• published — The key is published in the zone, and it's still used for signing since the pre-active state.

Second, we list the states of the key being rolled-out.

Standard states:

• retire-active — The key is still used for signing, and is published in the zone, waiting for the updated
DS records in parent zone to be acked by resolvers (KSK case) or synchronizing with KSK during algorithm
rollover (ZSK case).

• retired — The key is no longer used for signing. If ZSK, the key is still published in the zone.

• removed — The key is not used in any way (in most cases such keys are deleted immediately).

Special states for algorithm rollover:

• post-active — The key is no longer published in the zone, but still used for signing.

Special states for RFC 5011 trust anchor roll-over

• revoke (only for KSK) — The key is published and used for signing, and the Revoked flag is set.

Note: Trust anchor roll-over is not implemented with automatic key management.

The revoke state can only be established using keymgr when using Manual key management.

The states listed above are relevant for keymgr operations like generating a key, setting its timers and listing KASP
database.

Note that the key "states" displayed in the server log lines while zone signing are not according to those listed
above, but just a hint as to what the key is currently used for (e.g. "public, active" = key is published in the zone
and used for signing).

5.13 DNSSEC key rollovers

This section describes the process of DNSSEC key rollover and its implementation in Knot DNS, and how the
operator might watch and check that it's working correctly. The prerequisite is automatic zone signing with enabled
automatic key management.

The KSK and ZSK rollovers are triggered by the respective zone key getting old according to the settings (see KSK
and ZSK lifetimes).

The algorithm rollover starts when the policy algorithm field is updated to a different value.

The signing scheme rollover happens when the policy signing scheme field is changed.

It's also possible to change the algorithm and signing scheme in one rollover.

The operator may check the next rollover phase time by watching the next zone signing time, either in the log or
via knotc zone-status. There is no special log for finishing a rollover.

Note: There are never two key rollovers running in parallel for one zone. If a rollover is triggered while another
is in progress, it waits until the first one is finished. Note that a rollover might be considered finished when the old
key is retired or waiting to be deleted.

The ZSK rollover is performed with Pre-publish method, KSK rollover uses Double-Signature scheme, as described
in RFC 6781.

5.13. DNSSEC key rollovers 35

https://datatracker.ietf.org/doc/html/rfc5011.html
https://datatracker.ietf.org/doc/html/rfc6781.html

Knot DNS Documentation, Release 3.4.0

5.13.1 Automatic KSK and ZSK rollovers example

Let's start with the following set of keys:

2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣
→˓ECDSAP256SHA256, public, active

The last fields hint the key state: public denotes a key that will be presented as the DNSKEY record, ready
means that CDS/CDNSKEY records were created, active tells us that the key is used for signing, while active+
is an active key undergoing a roll-over or roll-in.

For demonstration purposes, the following configuration is used:

submission:
- id: test_submission
check-interval: 2s
parent: dnssec_validating_resolver

policy:
- id: test_policy
ksk-lifetime: 5m
zsk-lifetime: 2m
propagation-delay: 2s
dnskey-ttl: 10s
zone-max-ttl: 15s
ksk-submission: test_submission

Upon the zone's KSK lifetime expiration, a new KSK is generated and the rollover continues along the lines of
RFC 6781#section-4.1.2:

KSK Rollover (53594 -> 3375)

2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, KSK rollover started
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, next key action, KSK tag 3375,␣
→˓submit at 2024-02-14T15:20:12+0100
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active+
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111204, new RRSIGs 3
2024-02-14T15:20:00+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:20:12+0100

... (propagation-delay + dnskey-ttl) ...

2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:12+0100 notice: [example.com.] DNSSEC, KSK submission, waiting for␣
→˓confirmation
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣

(continues on next page)

5.13. DNSSEC key rollovers 36

https://datatracker.ietf.org/doc/html/rfc6781.html#section-4.1.2

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

→˓ECDSAP256SHA256, public, active
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, ready, active+
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111205, new RRSIGs 6
2024-02-14T15:20:12+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓28T15:19:37+0100

At this point the new KSK has to be submitted to the parent zone. Knot detects the updated parent's DS record
automatically (and waits for additional period of the DS's TTL before retiring the old key) if parent DS check is
configured, otherwise the operator must confirm it manually (using knotc zone-ksk-submitted):

2024-02-14T15:20:12+0100 info: [example.com.] DS check, outgoing, remote 127.0.0.
→˓1@5300 TCP, KSK submission check: negative
2024-02-14T15:20:14+0100 info: [example.com.] DS check, outgoing, remote 127.0.0.
→˓1@5300 TCP/pool, KSK submission check: negative
2024-02-14T15:20:16+0100 info: [example.com.] DS check, outgoing, remote 127.0.0.
→˓1@5300 TCP/pool, KSK submission check: positive
2024-02-14T15:20:16+0100 notice: [example.com.] DNSSEC, KSK submission, confirmed
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, key, tag 53594, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active+
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111206, new RRSIGs 2
2024-02-14T15:20:16+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:20:23+0100

... (parent's DS TTL is 7 seconds) ...

2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, next key action, ZSK, generate␣
→˓at 2024-02-14T15:21:54+0100
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111207, new RRSIGs 2
2024-02-14T15:20:23+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:21:54+0100

Upon the zone's ZSK lifetime expiration, a new ZSK is generated and the rollover continues along the lines of RFC
6781#section-4.1.1:

ZSK Rollover (36185 -> 38559)

2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, ZSK rollover started
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, next key action, ZSK tag 38559,␣
→˓replace at 2024-02-14T15:22:06+0100

(continues on next page)

5.13. DNSSEC key rollovers 37

https://datatracker.ietf.org/doc/html/rfc6781.html#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc6781.html#section-4.1.1

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm␣
→˓ECDSAP256SHA256, public
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111208, new RRSIGs 2
2024-02-14T15:21:54+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:22:06+0100

... (propagation-delay + dnskey-ttl) ...

2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, next key action, ZSK tag 36185,␣
→˓remove at 2024-02-14T15:22:23+0100
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, key, tag 36185, algorithm␣
→˓ECDSAP256SHA256, public
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111209, new RRSIGs 14
2024-02-14T15:22:06+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:22:23+0100

... (propagation-delay + zone-max-ttl) ...

2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, next key action, ZSK, generate␣
→˓at 2024-02-14T15:24:06+0100
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111210, new RRSIGs 2
2024-02-14T15:22:23+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:24:06+0100

Further rollovers:

... (zsk-lifetime - propagation-delay - zone-max-ttl) ...

Another ZSK Rollover (38559 -> 59825)

2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, ZSK rollover started
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, next key action, ZSK tag 59825,␣
→˓replace at 2024-02-14T15:24:18+0100
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active

(continues on next page)

5.13. DNSSEC key rollovers 38

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, key, tag 38559, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, key, tag 59825, algorithm␣
→˓ECDSAP256SHA256, public
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111211, new RRSIGs 2
2024-02-14T15:24:06+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:24:18+0100

...

Another KSK Rollover (3375 -> 50822)

2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, signing zone
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, KSK rollover started
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, next key action, KSK tag 50822,␣
→˓submit at 2024-02-14T15:25:12+0100
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, key, tag 3375, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, key, tag 59825, algorithm␣
→˓ECDSAP256SHA256, public, active
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, key, tag 50822, algorithm␣
→˓ECDSAP256SHA256, KSK, public, active+
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, signing started
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, successfully signed, serial␣
→˓2010111214, new RRSIGs 3
2024-02-14T15:25:00+0100 info: [example.com.] DNSSEC, next signing at 2024-02-
→˓14T15:25:12+0100

...

Tip: If systemd is available, the KSK submission event is logged into journald in a structured way. The intended
use case is to trigger a user-created script. Example:

journalctl -f -t knotd -o json | python3 -c '
import json, sys
for line in sys.stdin:
k = json.loads(line);
if "KEY_SUBMISSION" in k:
print("%s, zone=%s, keytag=%s" % (k["__REALTIME_TIMESTAMP"], k["ZONE"], k["KEY_

→˓SUBMISSION"]))
'

Alternatively, the D-Bus signaling can be utilized for the same use.

5.13. DNSSEC key rollovers 39

Knot DNS Documentation, Release 3.4.0

5.14 DNSSEC shared KSK

Knot DNS allows, with automatic DNSSEC key management, to configure a shared KSK for multiple zones. By
enabling ksk-shared, we tell Knot to share all newly-created KSKs among all the zones with the same DNSSEC
signing policy assigned.

The feature works as follows. Each zone still manages its keys separately. If a new KSK shall be generated for
the zone, it first checks if it can grab another zone's shared KSK instead - that is the last generated KSK in any
of the zones with the same policy assigned. Anyway, only the cryptographic material is shared, the key may have
different timers in each zone.

Consequences:

If we have an initial setting with brand new zones without any DNSSEC keys, the initial keys for all zones are
generated. With shared KSK, they will all have the same KSK, but different ZSKs. The KSK rollovers may take
place at slightly different times for each of the zones, but the resulting new KSK will be shared again among all of
them.

If we have zones which already have their keys, turning on the shared KSK feature triggers no action. But when a
KSK rollover takes place, they will use the same new key afterwards.

Warning: Changing the policy id must be done carefully if shared KSK is in use.

5.15 DNSSEC delete algorithm

This is how to "disconnect" a signed zone from a DNSSEC-aware parent zone. More precisely, we tell the parent
zone to remove our zone's DS record by publishing a special formatted CDNSKEY and CDS record. This is mostly
useful if we want to turn off DNSSEC on our zone so it becomes insecure, but not bogus.

With automatic DNSSEC signing and key management by Knot, this is as easy as configuring cds-cdnskey-publish
option and reloading the configuration. We check if the special CDNSKEY and CDS records with the rdata "0 3 0
AA==" and "0 0 0 00", respectively, appeared in the zone.

After the parent zone notices and reflects the change, we wait for TTL expire (so all resolvers' caches get updated),
and finally we may do anything with the zone, e.g. turning off DNSSEC, removing all the keys and signatures as
desired.

5.16 DNSSEC Offline KSK

Knot DNS allows a special mode of operation where the private part of the Key Signing Key is not available to
the daemon, but it is rather stored securely in an offline storage. This requires that the KSK/ZSK signing scheme
is used (i.e. single-type-signing is off). The Zone Signing Key is always fully available to the daemon in order to
sign common changes to the zone contents.

The server (or the "ZSK side") only uses ZSK to sign zone contents and its changes. Before performing a ZSK
rollover, the DNSKEY records will be pre-generated and signed by the signer (the "KSK side"). Both sides ex-
change keys in the form of human-readable messages with the help of the keymgr utility.

5.14. DNSSEC shared KSK 40

Knot DNS Documentation, Release 3.4.0

5.16.1 Prerequisites

For the ZSK side (i.e. the operator of the DNS server), the zone has to be configured with:

• Enabled DNSSEC signing

• Properly configured and assigned DNSSEC policy:

– Enabled manual

– Enabled offline-ksk

– Explicit dnskey-ttl

– Explicit zone-max-ttl

– Recommended keytag-modulo setting to 0/2 to prevent keytag conflicts

– Other options are optional

• KASP DB may contain a ZSK (the present or some previous one(s))

For the KSK side (i.e. the operator of the KSK signer), the zone has to be configured with:

• Properly configured and assigned DNSSEC policy:

– Enabled manual

– Enabled offline-ksk

– Explicit rrsig-refresh

– Recommended keytag-modulo setting to 1/2 to prevent keytag conflicts

– Optional rrsig-lifetime, rrsig-pre-refresh, algorithm, reproducible-signing, and cds-cdnskey-publish

– Other options are ignored

• KASP DB contains a KSK (the present or a newly generated one)

5.16.2 Generating and signing future ZSKs

1. Use the keymgr pregenerate command on the ZSK side to prepare the ZSKs for a specified period of
time in the future. The following example generates ZSKs for the example.com zone for 6 months ahead
starting from now:

$ keymgr -c /path/to/ZSK/side.conf example.com. pregenerate +6mo

If the time period is selected as e.g. 2 x zsk-lifetime + 4 x propagation-delay, it will prepare roughly two
complete future key rollovers. The newly-generated ZSKs remain in non-published state until their rollover
starts, i.e. the time they would be generated in case of automatic key management.

2. Use the keymgr generate-ksr command on the ZSK side to export the public parts of the future ZSKs in
a form similar to DNSKEY records. You might use the same time period as in the first step:

$ keymgr -c /path/to/ZSK/side.conf example.com. generate-ksr +0 +6mo > /path/to/
→˓ksr/file

Save the output of the command (called the Key Signing Request or KSR) to a file and transfer it to the KSK
side e.g. via e-mail.

3. Use the keymgr sign-ksr command on the KSK side with the KSR file from the previous step as a pa-
rameter:

$ keymgr -c /path/to/KSK/side.conf example.com. sign-ksr /path/to/ksr/file > /
→˓path/to/skr/file

5.16. DNSSEC Offline KSK 41

Knot DNS Documentation, Release 3.4.0

This creates all the future forms of the DNSKEY, CDNSKEY and CSK records and all the respective RRSIGs
and prints them on output. Save the output of the command (called the Signed Key Response or SKR) to a
file and transfer it back to the ZSK side.

4. Use the keymgr import-skr command to import the records and signatures from the SKR file generated
in the last step into the KASP DB on the ZSK side:

$ keymgr -c /path/to/ZSK/side.conf example.com. import-skr /path/to/skr/file

5. Use the knotc zone-keys-load command to trigger a zone re-sign on the ZSK-side and set up the future
re-signing events correctly.:

$ knotc -c /path/to/ZSK/side.conf zone-keys-load example.com.

6. Now the future ZSKs and DNSKEY records with signatures are ready in KASP DB for later usage. Knot
automatically uses them at the correct time intervals. The entire procedure must be repeated before the time
period selected at the beginning passes, or whenever a configuration is changed significantly. Importing new
SKR over some previously-imported one leads to deleting the old offline records.

5.16.3 Offline KSK and manual ZSK management

If the automatically preplanned ZSK roll-overs (first step) are not desired, just set the zsk-lifetime to zero, and
manually pregenerate ZSK keys and set their timers. Then follow the steps generate-ksr — sign-ksr —
import-skr — zone-keys-load and repeat the ceremony when necessary.

5.16.4 Offline KSK roll-over

The KSKs (on the KSK side) must be managed manually, but manual KSK roll-over is possible. Just plan the steps
of the KSK roll-over in advance, and whenever the KSK set or timers are changed, re-perform the relevant rest of
the ceremony sign-ksr — import-skr — zone-keys-load.

5.16.5 Emergency SKR

A general recommendation for large deployments is to have some backup pre-published keys, so that if the current
ones are compromised, they can be rolled-over to the backup ones without any delay. But in the case of Offline
KSK, according to the procedures above, both ZSK and KSK immediate rollovers require the KSR-SKR ceremony.

However, a trick can be done to achieve really immediate key substitution. This is no longer about Knot DNS
functionality, just a hint for the operator.

The idea is to perform every KSR-SKR ceremony twice: once with normal state of the keys (the backup key
is only published), and once with the keys already exchanged (the backup key is temporarily marked as active
and the standard key temporarily as public only). The second (backup) SKR should be saved for emergency key
replacement.

Summary of the steps:

• Prepare KSK and ZSK side as usual, including public-only emergency key

• Perform normal Offline KSK ceremony:

– Pre-generate ZSKs (only in the case of automatic ZSK management)

– Generate KSR

– Sign KSR on the KSK side

– Import SKR

– Re-sign the zone

• Freeze the zone on the ZSK side

5.16. DNSSEC Offline KSK 42

Knot DNS Documentation, Release 3.4.0

• Temporarily set the backup key as active and the normal key as publish-only

• Perform backup Offline KSK ceremony:

– Generate KSR (only if the backup key is a replacement for ZSK)

– Sign the KSR on the KSK side

– Save the SKR to a backup storage, don't import it yet

• Return the keys to the previous state

• Thaw the zone on the ZSK side

Emergency key replacement:

• Import the backup SKR

• Align the keys with the new states (backup key as active, compromised key as public)

• Re-sign the zone

5.17 DNSSEC multi-signer

Multi-signer is a general term that refers to any mode of operation in which a DNS zone is signed by multiple servers
(usually two) in parallel. Knot DNS offers various multi-signer modes, which are recommended for redundancy
within an organization. For multi-signer operations involving multiple "DNSSEC providers" and the ability to
switch between them, you can also refer to MUSIC.

Regardless of the chosen mode from the following options, any secondary that has multiple signers configured as
primaries must prevent interchanged IXFR from them. This can be achieved either by setting master pinning on
every secondary or by setting distinct serial-modulo on each signer. It is recommended to combine both approaches.
Alternatively, if any of the secondaries is not Knot DNS, provide-ixfr can be disabled on the signers.

In order to prevent keytag conflicts, it is recommended that the keytags of keys generated by each signer are from
distinct subset of possible values. With Knot DNS, this can be achieved using keytag-modulo option (e.g. for three
signers, setting 0/3 on the first one, 1/3 on the second, and 2/3 on the third of them).

5.17.1 Sharing private keys, manual policy

When DNSSEC keys are shared among zone signing servers (signers), one challenge is automatic key management
(roll-overs) and synchronization among the signers. In this example mode of operation, it is expected that key
management is maintained outside of Knot, and the generated keys, including private keys and metadata (timers),
are available in Bind9 format.

Every new key is then imported into each Knot using the keymgr import-bind command, after which knotc
zone-keys-load is invoked. With manual policy configured, the signers simply follow prescribed key timers,
maintaining the same key set at each signer. For more useful commands like list, set, and delete, refer to
keymgr.

5.17.2 Sharing private keys, automatic policy

Knot handles automatic key management very well, but enabling it on multiple instances would lead to redundant
key generation. However, it's possible to enable it on one signer and keep synchronizing the keys to all others. The
managing signer shall be configured with automatic ZSK/KSK management, all others with manual policy.

The key set changes on the managing signer can be monitored by periodic queries with keymgr list, or by listening
to D-Bus interface and watching for the keys_updated event.

5.17. DNSSEC multi-signer 43

https://github.com/DNSSEC-Provisioning/music

Knot DNS Documentation, Release 3.4.0

Whenever the key set is changed, key synchronization can be safely performed with Data and metadata backup fea-
ture. Dump the KASP database on the managing signer with knotc zone-backup +kaspdb, transfer the backup di-
rectory to each other signer, and import the keys by knotc zone-restore +kaspdb, followed by zone-keys-load
on them.

This way, the full key set, including private keys and all metadata, is always synchronized between signers. The
method of transporting the backup directory is beyond the scope of Knot and this documentation. An eventual loss
of the managing signer results in the automatic key management being halted, but DNSSEC signing continues to
function. The synchronization delay for keys between the managing signer and other signers must be accounted
for in propagation-delay.

5.17.3 Distinct keys, DNSKEY record synchronization

When the DNSSEC keys are not shared among signers, each server can manage its own keys separately. However,
the DNSKEY (including CDNSKEY and CDS) records (with public keys) must be synchronized for full validity
of the signed zone. Dynamic updates can be used to achieve this sharing.

The following configuration options should be used:

• Set dnskey-management to incremental on each signer to ensure it retains the other's DNSKEY records in
the zone during signing.

• Set delete-delay to a reasonable time interval, which ensures that all signers get synchronized during this
period.

• Set cds-cdnskey-publish to either none or always, otherwise the parent DS record might configure itself to
point only to one signer's KSK.

• Configure dnskey-sync to all other signers so that this signer's public keys appear in each other's DNSKEY
(also applies to CDNSKEY and CDS) RRSets.

• Configure Access control list (ACL) so that DDNS from all other signers is allowed.

• Set ddns-master to empty value ("") so that DDNS from other signers is not forwarded to the primary master
if any.

• Additionally, the synchronization delay between all signers must be accounted for in propagation-delay.

With careful configuration, all signers automatically synchronize their DNSKEY (and eventually CDNSKEY and
CDS) RRSets, keeping them synchronized during roll-overs. Nevertheless, it is recommended to monitor their
logs.

Note: It is highly recommended to use this mode with only two signers. With three or more signers, it often
happens that they continuously overwrite each other's DNSKEYs for a long time before settling down. This can be
mitigated by configuring dnskey-sync in a cyclic maner, such that they form a cycle (i.e. signer1 synchronizes only
to signer2, signer2 to signer3 and so on). However, this in turn leads to a breakage in DNSKEY synchronization
whenever any signer goes offline. A practical compromise is carefully configuring the order of each signer's dnskey-
sync values in the way that the "cycling" signer is at the first position and the remaining signers follow.

An illustrative example of the second of three signers:

remote:
- id: signer1
address: 10.20.30.1

- id: signer3
address: 10.20.30.3

acl:
- id: signers
remote: [signer1, signer3]
action: [query, update]

(continues on next page)

5.17. DNSSEC multi-signer 44

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

TODO configure TSIGs!

dnskey-sync:
- id: sync
remote: [signer3, signer1] # the order matters here!

policy:
- id: multisigner
single-type-signing: on
ksk-lifetime: 60d
ksk-submission: ... # TODO see Automatic KSK management
propagation-delay: 14h
delete-delay: 2h
cds-cdnskey-publish: always
dnskey-management: incremental
dnskey-sync: sync

zone:
- domain: example.com.
TODO configure zonefile and journal
TODO configure transfers in/out: master, NOTIFY, ACLs...
dnssec-signing: on
dnssec-policy: multisigner
ddns-master: ""
serial-modulo: 1/3
acl: signers

5.17.4 Distinct keys, DNSKEY at common unsigned primary

The same approach and configuration can be used, with the difference that the signers do not send updated
DNSKEYs (along with CDNSKEYs and CDSs) to each other. Instead, they send the updates to their common
primary, which holds the unsigned version of zone. The only configuration change involves redirecting dnskey-
sync to the common primary and adjusting its ACL to allow DDNS from the signers.

It is also necessary to configure ixfr-benevolent on each signer so that they accept incremental zone transfers from
the primary with additions (or removals) of their own's DNSKEYs.

This setup should work nicely with any number of signers, however, due to the size of DNSKEY RRSet, at most
three are advisable.

5.18 DNSSEC keys import to HSM

Knot DNS stores DNSSEC keys in textual PEM format (RFC 7468), while many HSM management software
require the keys for import to be in binary DER format (Rec. ITU-T X.690). Keys can be converted from one
format to another by software tools such as certtool from GnuTLS suite or openssl from OpenSSL suite.

In the examples below, c4eae5dea3ee8c15395680085c515f2ad41941b6 is used as the key ID,
c4eae5dea3ee8c15395680085c515f2ad41941b6.pem represents the filename of the key in PEM format as
copied from the Knot DNS zone's KASP database directory, c4eae5dea3ee8c15395680085c515f2ad41941b6.
priv.der represents the file containing the private key in DER format as generated by the conversion tool, and
c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der represents the file containing the public key in
DER format as generated by the conversion tool.

$ certtool -V -k --outder --infile c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
--outfile c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der

(continues on next page)

5.18. DNSSEC keys import to HSM 45

https://datatracker.ietf.org/doc/html/rfc7468.html
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=x.690
https://www.gnutls.org/
https://www.openssl.org/

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

$ certtool -V --pubkey-info --outder --load-privkey␣
→˓c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
--outfile c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der

As an alternative, openssl can be used instead. It is necessary to specify either rsa or ec command according to
the algorithm used by the key.

$ openssl rsa -outform DER -in c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
-out c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der

$ openssl rsa -outform DER -in c4eae5dea3ee8c15395680085c515f2ad41941b6.pem \
-out c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der -pubout

Actual import of keys (both public and private keys from the same key pair) to an HSM can be done via PKCS #11
interface, by pkcs11-tool from OpenSC toolkit for example. In the example below, /usr/local/lib/pkcs11.
so is used as a name of the PKCS #11 library or module used for communication with the HSM.

$ pkcs11-tool --module /usr/local/lib/pkcs11.so --login \
--write-object c4eae5dea3ee8c15395680085c515f2ad41941b6.priv.der --type privkey \
--usage-sign --id c4eae5dea3ee8c15395680085c515f2ad41941b6

$ pkcs11-tool --module /usr/local/lib/pkcs11.so -login \
--write-object c4eae5dea3ee8c15395680085c515f2ad41941b6.pub.der --type pubkey \
--usage-sign --id c4eae5dea3ee8c15395680085c515f2ad41941b6

5.19 Daemon controls

Knot DNS was designed to allow server reconfiguration on-the-fly without interrupting its operation. Thus it is
possible to change both configuration and zone files and also add or remove zones without restarting the server.
This can be done with:

$ knotc reload

If you want to refresh the secondary zones, you can do this with:

$ knotc zone-refresh

5.20 Logging

Knot DNS supports logging to syslog or systemd-journald facility, to a specified file, to standard output, or
to standard error output. Several different logging targets may be used in parallel.

If syslog or systemd-journald is used for logging, log rotation is handled by that logging facility. When
logging to a specified file, log rotation should be done by moving the current log file followed by reopening of the
log file with either knotc -b reload or by sending SIGHUP to the knotd process (see the pidfile).

5.19. Daemon controls 46

https://github.com/OpenSC/OpenSC/wiki

Knot DNS Documentation, Release 3.4.0

5.21 Data and metadata backup

Some of the zone-related data, such as zone contents or DNSSEC signing keys, and metadata, like zone timers,
might be worth backing up. For the sake of consistency, it's usually necessary to shut down the server, or at least
freeze all the zones, before copying the data like zone files, KASP database, etc, to a backup location. To avoid
this necessity, Knot DNS provides a feature to back up some or all of the zones seamlessly.

5.21.1 Online backup

While the server is running and the zones normally loaded (even when they are constantly/frequently being up-
dated), the user can manually trigger the backup by calling:

$ knotc zone-backup +backupdir /path/of/backup

To back up just some of the zones (instead of all), the user might provide their list:

$ knotc zone-backup +backupdir /path/to/backup zone1.com. zone2.com. ...

The backup directory should be empty or non-existing and it must be accessible and writable for the user account
under which knotd is running. The backup procedure will begin soon and will happen zone-by-zone (partially in
parallel if more background-workers are configured). The user shall check the logs for the outcome of each
zone's backup attempt. The knotc's -b parameter might be used if the user desires to wait until the backup work
is done and a simple result status is printed out.

Tip: There is a plain ASCII text file in the backup directory, knot_backup.label, that contains some useful
information about the backup, such as the backup creation date & time, the server identity, etc. Care must always
be taken not to remove this file from the backup nor to damage it.

If a backup fails, the backup directory containing incomplete backup is retained. For repeated backup attempts to
the same directory, it must be removed or renamed manually first.

Note: When backing up or restoring a catalog zone, it's necessary to make sure that the contents of the catalog
doesn't change during the backup or restore. An easy solution is to use knotc zone-freeze on the catalog zone
for the time of backup and restore.

5.21.2 Offline restore

If the Online backup was performed for all zones, it's possible to restore the backed up data by simply copying
them to their normal locations, since they're simply copies. For example, the user can copy (overwrite) the backed
up KASP database files to their configured location.

This restore of course must be done when the server is stopped. After starting up the server, it should run in the
same state as at the time of backup.

This method is recommended in the case of complete data loss, for example physical server failure.

Note: The online backup procedure stores all zone files in a single directory using their default file names. If the
original directory layout was different, then the required directory structure must be created manually for offline
restore and zone files must be placed individually to their respective directories. If the zone file names don't follow
the default pattern, they must be renamed manually to match the configuration. These limitations don't apply to
the online restore procedure.

5.21. Data and metadata backup 47

Knot DNS Documentation, Release 3.4.0

5.21.3 Online restore

This procedure is symmetrical to Online backup. By calling:

$ knotc zone-restore +backupdir /path/of/backup

the user triggers a one-by-one zone restore from the backup on a running server. Again, a subset of zones might
be specified. It must be specified if the backup was created for only a subset of zones.

Note: For restore of backups that have been created by Knot DNS releases prior to 3.1, it's necessary to use the
-f option. Since this option also turns off some verification checks, it shouldn't be used in other cases.

Note: For QUIC/TLS, only the auto-generated key is restored. The zone-restore command doesn't restore a
user-defined QUIC/TLS key and certificate so as to avoid possible configuration management conflicts and they
must be restored from the backup (its subdirectory quic) manually. In all cases, restart of the Knot server after the
restore is necessary for the restored QUIC/TLS key/certificate to take effect.

5.21.4 Limitations

Neither configuration file nor Configuration database is backed up by zone backup. The configuration has to be
synchronized before zone restore is performed!

If the private keys are stored in a HSM (anything using a PKCS#11 interface), they are not backed up. This includes
internal metadata of the PKCS#11 provider software, such as key mappings, authentication information, and the
configuration of the provider. Details are vendor-specific.

The restore procedure does not care for keys deleted after taking the snapshot. Thus, after restore, there might
remain some redundant .pem files of obsolete signing keys.

Tip: In order to seamlessly deploy a restored backup of KASP DB with respect to a possibly ongoing DNSSEC
key rollover, it's recommended to set propagation-delay to the sum of:

• The maximum delay between beginning of the zone signing and publishing re-signed zone on all public
secondary servers.

• How long it takes for the backup server to start up with the restored data.

• The period between taking backup snapshots of the live environment.

5.22 Statistics

The server provides some general statistics and optional query module statistics (see mod-stats).

Server statistics or global module statistics can be shown by:

$ knotc stats
$ knotc stats server # Show all server counters
$ knotc stats mod-stats # Show all mod-stats counters
$ knotc stats server.zone-count # Show specific server counter

Per zone statistics can be shown by:

5.22. Statistics 48

Knot DNS Documentation, Release 3.4.0

$ knotc zone-stats example.com. # Show all zone counters
$ knotc zone-stats example.com. mod-stats # Show all zone mod-stats␣
→˓counters
$ knotc zone-stats example.com. mod-stats.query-type # Show specific zone counter
$ knotc zone-stats -- # Show all zone counters for␣
→˓all zones
$ knotc zone-stats -- mod-stats.request-protocol # Show specific zone counter␣
→˓for all zones

To show all supported counters even with 0 value, use the force option.

A simple periodic statistic dump to a YAML file can also be enabled. See statistics section for the configuration
details.

As the statistics data can be accessed over the server control socket, it is possible to create an arbitrary script
(Python is supported at the moment) which could, for example, publish the data in JSON format via HTTP(S) or
upload the data to a more efficient time series database. Take a look into the python folder of the project for these
scripts.

5.23 Mode XDP

Thanks to recent Linux kernel capabilities, namely eXpress Data Path and AF_XDP address family, Knot DNS
offers a high-performance DNS over UDP packet processing mode. The basic idea is to filter DNS messages close
to the network device and effectively forward them to the nameserver without touching the network stack of the
operating system. Other messages (including DNS over TCP) are processed as usual.

If listen is configured, the server creates additional XDP workers, listening on specified interface(s) and port(s) for
DNS over UDP queries. Each XDP worker handles one RX and TX network queue pair.

5.23.1 Pre-requisites

• Linux kernel 4.18+ (5.x+ is recommended for optimal performance) compiled with the CON-
FIG_XDP_SOCKETS=y option. The XDP mode isn't supported in other operating systems.

• A multiqueue network card, which offers enough Combined RX/TX channels, with native XDP support is
highly recommended. Successfully tested cards:

– NVIDIA (Mellanox) ConnectX-6 Dx (driver mlx5_core), maximum number of channels per interface
is 63. Official drivers are recommended.

– Intel series 700 (driver i40e), maximum number of channels per interface is 64. Linux kernel drivers
are recommended.

Cards with known instability issues:

– Intel series E810 (driver ice).

– Intel series 500 (driver ixgbe).

• If the knotd service is not directly executed in the privileged mode, some additional Linux capabilities have
to be set:

Execute command:

systemctl edit knot

And insert these lines:

5.23. Mode XDP 49

Knot DNS Documentation, Release 3.4.0

[Service]
CapabilityBoundingSet=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_
→˓SYS_RESOURCE
AmbientCapabilities=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_
→˓RESOURCE

The CAP_SYS_RESOURCE is needed on Linux < 5.11.

All the capabilities are dropped upon the service is started.

• For proper processing of VLAN traffic, VLAN offloading should be disabled. E.g.:

ethtool -K <interface> tx-vlan-offload off rx-vlan-offload off

5.23.2 Optimizations

Some helpful commands:

ethtool -N <interface> rx-flow-hash udp4 sdfn
ethtool -N <interface> rx-flow-hash udp6 sdfn
ethtool -L <interface> combined <?>
ethtool -G <interface> rx <?> tx <?>
renice -n 19 -p $(pgrep '^ksoftirqd/[0-9]*$')

5.23.3 Limitations

• Request and its response must go through the same physical network device.

• Dynamic DNS over XDP is not supported.

• MTU higher than 1790 bytes is not supported.

• Multiple BPF filters per one network device are not supported.

• Systems with big-endian byte ordering require special recompilation of the nameserver.

• IPv4 header and UDP checksums are not verified on received DNS messages.

• DNS over XDP traffic is not visible to common system tools (e.g. firewall, tcpdump etc.).

• BPF filter is not automatically unloaded from the network device. Manual filter unload:

ip link set dev <interface> xdp off

5.23. Mode XDP 50

CHAPTER

SIX

TROUBLESHOOTING

First of all, check the logs. Enabling at least the warningmessage severity may help you to identify some problems.
See the log section for details.

6.1 Reporting bugs

If you are unable to solve the problem by yourself, you can submit a bugreport to the Knot DNS developers. For
security or sensitive issues contact the developers directly on knot-dns@labs.nic.cz. All other bugs and questions
may be directed to the public Knot DNS users mailing list (knot-dns-users@lists.nic.cz) or may be entered into the
issue tracking system.

Before anything else, please try to answer the following questions:

• Has it been working?

• What has changed? System configuration, software updates, network configuration, firewall rules modifica-
tion, hardware replacement, etc.

The bugreport should contain the answers for the previous questions and in addition at least the following infor-
mation:

• Knot DNS version and type of installation (distribution package, from source, etc.)

• Operating system, platform, kernel version

• Relevant basic hardware information (processor, amount of memory, available network devices, etc.)

• Description of the bug

• Log output with the highest verbosity (category any, severity debug)

• Steps to reproduce the bug (if known)

• Backtrace (if the bug caused a crash or a hang; see the next section)

If possible, please provide a minimal configuration file and zone files which can be used to reproduce the bug.

6.2 Generating backtrace

Backtrace carries basic information about the state of the program and how the program got where it is. It helps
determining the location of the bug in the source code.

If you run Knot DNS from distribution packages, make sure the debugging symbols for the package are installed.
The symbols are usually distributed in a separate package.

There are several ways to get the backtrace. One possible way is to extract the backtrace from a core dump file.
Core dump is a memory snapshot generated by the operating system when a process crashes. The generating of
core dumps must be usually enabled:

51

mailto:knot-dns@labs.nic.cz
mailto:knot-dns-users@lists.nic.cz
https://gitlab.nic.cz/knot/knot-dns/issues

Knot DNS Documentation, Release 3.4.0

$ ulimit -c unlimited # Enable unlimited core dump size
$ knotd ... # Reproduce the crash
...
$ gdb knotd <core-dump-file> # Start gdb on the core dump
(gdb) info threads # Get a summary of all threads
(gdb) thread apply all bt full # Extract backtrace from all threads
(gdb) quit

To save the backtrace into a file, the following GDB commands can be used:

(gdb) set pagination off
(gdb) set logging file backtrace.txt
(gdb) set logging on
(gdb) info threads
(gdb) thread apply all bt full
(gdb) set logging off

To generate a core dump of a running process, the gcore utility can be used:

$ gcore -o <output-file> $(pidof knotd)

Please note that core dumps can be intercepted by an error-collecting system service (systemd-coredump, ABRT,
Apport, etc.). If you are using such a service, consult its documentation about core dump retrieval.

If the error is reproducible, it is also possible to start and inspect the server directly in the debugger:

$ gdb --args knotd -c /etc/knot.conf
(gdb) run
...

Alternatively, the debugger can be attached to a running server process. This is generally useful when troubleshoot-
ing a stuck process:

$ knotd ...
$ gdb --pid $(pidof knotd)
(gdb) continue
...

If you fail to get a backtrace of a running process using the previous method, you may try the single-purpose
pstack utility:

$ pstack $(pidof knotd) > backtrace.txt

6.3 Crash caused by a Bus error

Zone files and a configuration file are usually accessed as mmaped files. If such files are changed or truncated at
the same time when those files are being loaded/reloaded by the program, it may result in Bus error (SIGBUS) and
a program crash. If you encounter a Bus error, first check that there isn't a concurrent write access from an external
program to the respective files.

6.3. Crash caused by a Bus error 52

https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

CHAPTER

SEVEN

CONFIGURATION REFERENCE

7.1 Description

Configuration files for Knot DNS use simplified YAML format. Simplified means that not all of the features are
supported.

For the description of configuration items, we have to declare a meaning of the following symbols:

• INT – Integer

• STR – Textual string

• HEXSTR – Hexadecimal string (with 0x prefix)

• BOOL – Boolean value (on/off or true/false)

• TIME – Number of seconds, an integer with a possible time multiplier suffix (s ~ 1, m ~ 60, h ~ 3600, d ~ 24
* 3600, w ~ 7 * 24 * 3600, M ~ 30 * 24 * 3600, y ~ 365 * 24 * 3600)

• SIZE – Number of bytes, an integer with a possible size multiplier suffix (B ~ 1, K ~ 1024, M ~ 1024^2 or G
~ 1024^3)

• BASE64 – Base64 encoded string

• ADDR – IPv4 or IPv6 address

• DNAME – Domain name

• ... – Multi-valued item, order of the values is preserved

• [] – Optional value

• | – Choice

The configuration consists of several fixed sections and optional module sections. There are 17 fixed sections
(module, server, xdp, control, log, statistics, database, keystore, key, remote, remotes, acl,
submission, dnskey-sync, policy, template, zone). Module sections are prefixed with the mod- prefix (e.g.
mod-stats).

Most of the sections (e.g. zone) are sequences of settings blocks. Each settings block begins with a unique
identifier, which can be used as a reference from other sections (such an identifier must be defined in advance).

A multi-valued item can be specified either as a YAML sequence:

address: [10.0.0.1, 10.0.0.2]

or as more single-valued items each on an extra line:

address: 10.0.0.1
address: 10.0.0.2

If an item value contains spaces or other special characters, it is necessary to enclose such a value within double
quotes " ".

53

Knot DNS Documentation, Release 3.4.0

If not specified otherwise, an item representing a file or a directory path may be defined either as an absolute path
(starting with /), or a path relative to the same directory as the default value of the item.

7.2 Comments

A comment begins with a # character and is ignored during processing. Also each configuration section or sequence
block allows a permanent comment using the comment item which is stored in the server beside the configuration.

7.3 Including configuration

Another configuration file or files, matching a pattern, can be included at the top level in the current file.

include: STR

7.3.1 include

A path or a matching pattern specifying one or more files that are included at the place of the include option position
in the configuration. If the path is not absolute, then it is considered to be relative to the current file. The pattern
can be an arbitrary string meeting POSIX glob requirements, e.g. dir/*.conf. Matching files are processed in sorted
order.

Default: not set

7.4 Clearing configuration sections

It's possible to clear specified configuration sections at given phases of the configuration parsing.

clear: STR

7.4.1 clear

A matching pattern specifying configuration sections that are cleared when this item is parsed. This allows over-
riding of existing configuration in the configuration database when including a configuration file or ensures that
some configuration wasn't specified in previous includes.

Note: For the pattern matching the POSIX function fnmatch() is used. On Linux, the GNU extension
FNM_EXTMATCH is enabled, which allows extended pattern matching. Examples:

• clear: zone – Clears the zone section.

• clear: mod-* – Clears all module sections.

• clear: "[!z]*" – Clears all sections not beginning with letter z.

• clear: !(zone) – (GNU only) Clears all sections except the zone one.

• clear: @(zone|template) – (GNU only) Clears the zone and template sections.

Default: not set

7.2. Comments 54

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html
https://www.gnu.org/software/libc/manual/html_node/Wildcard-Matching.html#index-FNM_005fEXTMATCH

Knot DNS Documentation, Release 3.4.0

7.5 module section

Dynamic modules loading configuration.

Note: If configured with non-empty --with-moduledir=path parameter, all shared modules in this directory
will be automatically loaded.

module:
- id: STR
file: STR

7.5.1 id

A module identifier in the form of the mod- prefix and module name suffix.

7.5.2 file

A path to a shared library file with the module implementation.

Warning: If the path is not absolute, the library is searched in the set of system directories. See man dlopen
for more details.

Default: ${libdir}/knot/modules-${version}/module_name.so (or ${path}/module_name.so if config-
ured with --with-moduledir=path)

7.6 server section

General options related to the server.

server:
identity: [STR]
version: [STR]
nsid: [STR|HEXSTR]
rundir: STR
user: STR[:STR]
pidfile: STR
udp-workers: INT
tcp-workers: INT
background-workers: INT
async-start: BOOL
tcp-idle-timeout: TIME
tcp-io-timeout: INT
tcp-remote-io-timeout: INT
tcp-max-clients: INT
tcp-reuseport: BOOL
tcp-fastopen: BOOL
quic-max-clients: INT
quic-outbuf-max-size: SIZE
quic-idle-close-timeout: TIME
remote-pool-limit: INT

(continues on next page)

7.5. module section 55

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

remote-pool-timeout: TIME
remote-retry-delay: INT
socket-affinity: BOOL
udp-max-payload: SIZE
udp-max-payload-ipv4: SIZE
udp-max-payload-ipv6: SIZE
key-file: STR
cert-file: STR
edns-client-subnet: BOOL
answer-rotation: BOOL
automatic-acl: BOOL
proxy-allowlist: ADDR[/INT] | ADDR-ADDR ...
dbus-event: none | running | zone-updated | ksk-submission | dnssec-invalid ...
dbus-init-delay: TIME
listen: ADDR[@INT] | STR ...
listen-quic: ADDR[@INT] ...
listen-tls: ADDR[@INT] ...

Caution: When you change configuration parameters dynamically or via configuration file reload, some
parameters in the Server section require restarting the Knot server so that the changes take effect. See below
for the details.

7.6.1 identity

An identity of the server returned in the response to the query for TXT record id.server. or hostname.bind.
in the CHAOS class (RFC 4892). Set to an empty value to disable.

Default: FQDN hostname

7.6.2 version

A version of the server software returned in the response to the query for TXT record version.server. or
version.bind. in the CHAOS class (RFC 4892). Set to an empty value to disable.

Default: server version

7.6.3 nsid

A DNS name server identifier (RFC 5001). Set to an empty value to disable.

Default: FQDN hostname at the moment of the daemon start

7.6.4 rundir

A path for storing run-time data (PID file, unix sockets, etc.). A non-absolute path is relative to the knotd startup
directory.

Depending on the usage of this parameter, its change may require restart of the Knot server to take effect.

Default: ${localstatedir}/run/knot (configured with --with-rundir=path)

7.6. server section 56

https://datatracker.ietf.org/doc/html/rfc4892.html
https://datatracker.ietf.org/doc/html/rfc4892.html
https://datatracker.ietf.org/doc/html/rfc5001.html

Knot DNS Documentation, Release 3.4.0

7.6.5 user

A system user with an optional system group (user:group) under which the server is run after starting and binding
to interfaces. Linux capabilities are employed if supported.

Change of this parameter requires restart of the Knot server to take effect.

Default: root:root

7.6.6 pidfile

A PID file location.

Change of this parameter requires restart of the Knot server to take effect.

Default: rundir/knot.pid

7.6.7 udp-workers

A number of UDP workers (threads) used to process incoming queries over UDP.

Change of this parameter requires restart of the Knot server to take effect.

Default: equal to the number of online CPUs

7.6.8 tcp-workers

A number of TCP workers (threads) used to process incoming queries over TCP.

Change of this parameter requires restart of the Knot server to take effect.

Default: equal to the number of online CPUs, default value is at least 10

7.6.9 background-workers

A number of workers (threads) used to execute background operations (zone loading, zone updates, etc.).

Change of this parameter requires restart of the Knot server to take effect.

Default: equal to the number of online CPUs, default value is at most 10

7.6.10 async-start

If enabled, server doesn't wait for the zones to be loaded and starts responding immediately with SERVFAIL
answers until the zone loads.

Default: off

7.6.11 tcp-idle-timeout

Maximum idle time (in seconds) between requests on an inbound TCP connection. It means if there is no activity
on an inbound TCP connection during this limit, the connection is closed by the server.

Minimum: 1

Default: 10

7.6. server section 57

Knot DNS Documentation, Release 3.4.0

7.6.12 tcp-io-timeout

Maximum time (in milliseconds) to receive or send one DNS message over an inbound TCP connection. It means
this limit applies to normal DNS queries and replies, incoming DDNS, and outgoing zone transfers. The timeout
is measured since some data is already available for processing. Set to 0 for infinity.

Default: 500 (milliseconds)

Caution: In order to reduce the risk of Slow Loris attacks, it's recommended setting this limit as low as
possible on public servers.

7.6.13 tcp-remote-io-timeout

Maximum time (in milliseconds) to receive or send one DNS message over an outbound TCP connection which
has already been established to a configured remote server. It means this limit applies to incoming zone transfers,
sending NOTIFY, DDNS forwarding, and DS check or push. This timeout includes the time needed for a network
round-trip and for a query processing by the remote. Set to 0 for infinity.

Default: 5000 (milliseconds)

7.6.14 tcp-reuseport

If enabled, each TCP worker listens on its own socket and the OS kernel socket load balancing is employed us-
ing SO_REUSEPORT (or SO_REUSEPORT_LB on FreeBSD). Due to the lack of one shared socket, the server
can offer higher response rate processing over TCP. However, in the case of time-consuming requests (e.g. zone
transfers of a TLD zone), enabled reuseport may result in delayed or not being responded client requests. So it is
advisable to use this option on secondary servers.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

7.6.15 tcp-fastopen

If enabled, use TCP Fast Open for outbound TCP communication (client side): incoming zone transfers, sending
NOTIFY, and DDNS forwarding. This mode simplifies TCP handshake and can result in better networking per-
formance. TCP Fast Open for inbound TCP communication (server side) isn't affected by this configuration as it's
enabled automatically if supported by OS.

Note: The TCP Fast Open support must also be enabled on the OS level:

• Linux/macOS: ensure kernel parameter net.ipv4.tcp_fastopen is 2 or 3 for server side, and 1 or 3 for
client side.

• FreeBSD: ensure kernel parameter net.inet.tcp.fastopen.server_enable is 1 for server side, and
net.inet.tcp.fastopen.client_enable is 1 for client side.

Default: off

7.6. server section 58

Knot DNS Documentation, Release 3.4.0

7.6.16 quic-max-clients

A maximum number of QUIC clients connected in parallel.

See also quic.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 128

Default: 10000 (ten thousand)

7.6.17 quic-outbuf-max-size

Maximum cumulative size of memory used for buffers of unACKed sent messages. This limit is per one UDP
worker.

Note: Set low if little memory is available (together with quic-max-clients since QUIC connections are memory-
heavy). Set to high value if outgoing zone transfers of big zone over QUIC are expected.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 1M (1 MiB)

Default: 100M (100 MiB)

7.6.18 quic-idle-close-timeout

Time in seconds, after which any idle QUIC connection is gracefully closed.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 1

Default: 4

7.6.19 remote-pool-limit

If nonzero, the server will keep up to this number of outgoing TCP connections open for later use. This is an
optimization to avoid frequent opening of TCP connections to the same remote.

Change of this parameter requires restart of the Knot server to take effect.

Default: 0

7.6.20 remote-pool-timeout

The timeout in seconds after which the unused kept-open outgoing TCP connections to remote servers are closed.

Default: 5

7.6. server section 59

Knot DNS Documentation, Release 3.4.0

7.6.21 remote-retry-delay

When a connection attempt times out to some remote address, this information will be kept for this specified time
(in milliseconds) and other connections to the same address won't be attempted. This prevents repetitive waiting
for timeout on an unreachable remote.

Default: 0

7.6.22 socket-affinity

If enabled and if SO_REUSEPORT is available on Linux, all configured network sockets are bound to UDP and
TCP workers in order to increase the networking performance. This mode isn't recommended for setups where the
number of network card queues is lower than the number of UDP or TCP workers.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

7.6.23 tcp-max-clients

A maximum number of TCP clients connected in parallel, set this below the file descriptor limit to avoid resource
exhaustion.

Note: It is advisable to adjust the maximum number of open files per process in your operating system configu-
ration.

Default: one half of the file descriptor limit for the server process

7.6.24 udp-max-payload

Maximum EDNS0 UDP payload size default for both IPv4 and IPv6.

Default: 1232

7.6.25 udp-max-payload-ipv4

Maximum EDNS0 UDP payload size for IPv4.

Default: 1232

7.6.26 udp-max-payload-ipv6

Maximum EDNS0 UDP payload size for IPv6.

Default: 1232

7.6. server section 60

Knot DNS Documentation, Release 3.4.0

7.6.27 key-file

Path to a server key PEM file which is used for DNS over QUIC/TLS communication. A non-absolute path of a
user specified key file is relative to the @config_dir@ directory.

Default: auto-generated key

7.6.28 cert-file

Path to a server certificate PEM file which is used for DNS over QUIC/TLS communication. A non-absolute path
is relative to the @config_dir@ directory.

Default: one-time in-memory certificate

7.6.29 edns-client-subnet

Enable or disable EDNS Client Subnet support. If enabled, responses to queries containing the EDNS Client
Subnet option always contain a valid EDNS Client Subnet option according to RFC 7871.

Default: off

7.6.30 answer-rotation

Enable or disable sorted-rrset rotation in the answer section of normal replies. The rotation shift is simply deter-
mined by a query ID.

Default: off

7.6.31 automatic-acl

If enabled, automatic ACL setting of configured remotes is considered when evaluating authorized operations.

Default: off

7.6.32 proxy-allowlist

An ordered list of IP addresses, network subnets, or network ranges which are allowed as a source address of
proxied DNS traffic over UDP. The supported proxy protocol is haproxy PROXY v2.

Note: TCP is not supported.

Default: not set

7.6.33 dbus-event

Specification of server or zone states which emit a D-Bus signal on the system bus. The bus name is cz.nic.
knotd, the object path is /cz/nic/knotd, and the interface name is cz.nic.knotd.events.

Possible values:

• none – No signal is emitted.

• running – There are two possible signals emitted:

– started when the server is started and all configured zones (including catalog zones and their mem-
bers) are loaded or successfully bootstrapped.

7.6. server section 61

https://datatracker.ietf.org/doc/html/rfc7871.html
https://www.haproxy.org/download/2.5/doc/proxy-protocol.txt

Knot DNS Documentation, Release 3.4.0

– stopped when the server shutdown sequence is initiated.

• zone-updated – The signal zone_updated is emitted when a zone has been updated; the signal parameters
are zone name and zone SOA serial.

• keys-updated - The signal keys_updated is emitted when a DNSSEC key set is updated; the signal
parameter is zone name.

• ksk-submission – The signal zone_ksk_submission is emitted if there is a ready KSK present when the
zone is signed; the signal parameters are zone name, KSK keytag, and KSK KASP id.

• dnssec-invalid – The signal zone_dnssec_invalid is emitted when DNSSEC validation fails; the
signal parameters are zone name, and remaining seconds until an RRSIG expires.

Note: This function requires systemd version at least 221 or libdbus.

Change of this parameter requires restart of the Knot server to take effect.

Default: none

7.6.34 dbus-init-delay

Time in seconds which the server waits upon D-Bus initialization to ensure the D-Bus client is ready to receive
signals.

Change of this parameter requires restart of the Knot server to take effect.

Minimum: 0

Default: 1

7.6.35 listen

One or more IP addresses where the server listens for incoming queries. Optional port specification (default is 53)
can be appended to each address using @ separator. Use 0.0.0.0 for all configured IPv4 addresses or :: for all
configured IPv6 addresses. Filesystem path can be specified for listening on local unix SOCK_STREAM socket.
Non-absolute path (i.e. not starting with /) is relative to rundir. Non-local address binding is automatically enabled
if supported by the operating system.

Change of this parameter requires restart of the Knot server to take effect.

Default: not set

7.6.36 listen-quic

One or more IP addresses (and optionally ports) where the server listens for incoming queries over QUIC protocol.

Change of this parameter requires restart of the Knot server to take effect.

Default: not set

7.6. server section 62

Knot DNS Documentation, Release 3.4.0

7.6.37 listen-tls

One or more IP addresses (and optionally ports) where the server listens for incoming queries over TLS protocol
(DoT).

Change of this parameter requires restart of the Knot server to take effect.

Default: not set

7.7 xdp section

Various options related to XDP listening, especially TCP.

xdp:
listen: STR[@INT] | ADDR[@INT] ...
udp: BOOL
tcp: BOOL
quic: BOOL
quic-port: INT
tcp-max-clients: INT
tcp-inbuf-max-size: SIZE
tcp-outbuf-max-size: SIZE
tcp-idle-close-timeout: TIME
tcp-idle-reset-timeout: TIME
tcp-resend-timeout: TIME
route-check: BOOL
ring-size: INT
busypoll-budget: INT
busypoll-timeout: INT

Caution: When you change configuration parameters dynamically or via configuration file reload, some
parameters in the XDP section require restarting the Knot server so that the changes take effect.

7.7.1 listen

One or more network device names (e.g. ens786f0) on which the Mode XDP is enabled. Alternatively, an IP
address can be used instead of a device name, but the server will still listen on all addresses belonging to the same
interface! Optional port specification (default is 53) can be appended to each device name or address using @
separator.

Change of this parameter requires restart of the Knot server to take effect.

Caution: If XDP workers only process regular DNS traffic over UDP, it is strongly recommended to also listen
on the addresses which are intended to offer the DNS service, at least to fulfil the DNS requirement for working
TCP.

Note: Incoming DDNS over XDP isn't supported. The server always responds with SERVFAIL.

Default: not set

7.7. xdp section 63

Knot DNS Documentation, Release 3.4.0

7.7.2 udp

If enabled, DNS over UDP is processed with XDP workers.

Change of this parameter requires restart of the Knot server to take effect.

Default: on

7.7.3 tcp

If enabled, DNS over TCP traffic is processed with XDP workers.

The TCP stack limitations:

• Congestion control is not implemented.

• Lost packets that do not contain TCP payload may not be resend.

• Not optimized for transfers of non-trivial zones.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

7.7.4 quic

If enabled, DNS over QUIC is processed with XDP workers.

Change of this parameter requires restart of the Knot server to take effect.

Default: off

7.7.5 quic-port

DNS over QUIC will listen on the interfaces configured by listen, but on different port, configured by this option.

Change of this parameter requires restart of the Knot server to take effect.

Default: 853

7.7.6 tcp-max-clients

A maximum number of TCP clients connected in parallel.

Minimum: 1024

Default: 1000000 (one million)

7.7.7 tcp-inbuf-max-size

Maximum cumulative size of memory used for buffers of incompletely received messages.

Minimum: 1M (1 MiB)

Default: 100M (100 MiB)

7.7. xdp section 64

Knot DNS Documentation, Release 3.4.0

7.7.8 tcp-outbuf-max-size

Maximum cumulative size of memory used for buffers of unACKed sent messages.

Minimum: 1M (1 MiB)

Default: 100M (100 MiB)

7.7.9 tcp-idle-close-timeout

Time in seconds, after which any idle connection is gracefully closed.

Minimum: 1

Default: 10

7.7.10 tcp-idle-reset-timeout

Time in seconds, after which any idle connection is forcibly closed.

Minimum: 1

Default: 20

7.7.11 tcp-resend-timeout

Resend outgoing data packets (with DNS response payload) if not ACKed before this timeout (in seconds).

Minimum: 1

Default: 5

7.7.12 route-check

If enabled, routing information from the operating system is considered when processing every incoming DNS
packet received over the XDP interface:

• If the outgoing interface of the corresponding DNS response differs from the incoming one, the packet is
processed normally by UDP/TCP workers (XDP isn't used).

• If the destination address is blackholed, unreachable, or prohibited, the DNS packet is dropped without any
response.

• The destination MAC address and possible VLAN tag for the response are taken from the routing system.

If disabled, symmetrical routing is applied. It means that the query source MAC address is used as a response
destination MAC address. Possible VLAN tag is preserved.

Change of this parameter requires restart of the Knot server to take effect.

Note: This mode requires forwarding enabled on the loopback interface (sysctl -w net.ipv4.conf.lo.
forwarding=1 and sysctl -w net.ipv6.conf.lo.forwarding=1). If forwarding is disabled, all incoming
DNS packets are dropped!

Only VLAN 802.1Q is supported.

Default: off

7.7. xdp section 65

Knot DNS Documentation, Release 3.4.0

7.7.13 ring-size

Size of RX, FQ, TX, and CQ rings.

Change of this parameter requires restart of the Knot server to take effect.

Note: This value should be at least as high as the configured RX size of the network device in the XDP mode.

Default: 2048

7.7.14 busypoll-budget

If set to a positive value, preferred busy polling is enabled with the specified budget.

Change of this parameter requires restart of the Knot server to take effect.

Note: Preferred busy polling also requires setting napi_defer_hard_irqs and gro_flush_timeout for the
appropriate network interface. E.g.:

echo 2 | sudo tee /sys/class/net/<interface>/napi_defer_hard_irqs
echo 200000 | sudo tee /sys/class/net/<interface>/gro_flush_timeout

Note: A recommended value is between 8 and 64.

Default: 0 (disabled)

7.7.15 busypoll-timeout

Timeout in microseconds of preferrred busy polling if enabled by busypoll-budget.

Change of this parameter requires restart of the Knot server to take effect.

Default: 20 (20 microseconds)

7.8 control section

Configuration of the server control interface.

control:
listen: STR
backlog: INT
timeout: TIME

7.8. control section 66

Knot DNS Documentation, Release 3.4.0

7.8.1 listen

A UNIX socket path where the server listens for control commands.

Change of this parameter requires restart of the Knot server to take effect.

Default: rundir/knot.sock

7.8.2 backlog

The control UNIX socket listen backlog size.

Change of this parameter requires restart of the Knot server to take effect.

Default: 5

7.8.3 timeout

Maximum time (in seconds) the control socket operations can take. Set to 0 for infinity.

Default: 5

7.9 log section

Server can be configured to log to the standard output, standard error output, syslog (or systemd journal if systemd
is enabled) or into an arbitrary file.

There are 6 logging severity levels:

• critical – Non-recoverable error resulting in server shutdown.

• error – Recoverable error, action should be taken.

• warning – Warning that might require user action.

• notice – Server notice or hint.

• info – Informational message.

• debug – Debug or detailed message.

In the case of a missing log section, warning or more serious messages will be logged to both standard error output
and syslog. The info and notice messages will be logged to standard output.

log:
- target: stdout | stderr | syslog | STR
server: critical | error | warning | notice | info | debug
control: critical | error | warning | notice | info | debug
zone: critical | error | warning | notice | info | debug
quic: critical | error | warning | notice | info | debug
any: critical | error | warning | notice | info | debug

7.9. log section 67

Knot DNS Documentation, Release 3.4.0

7.9.1 target

A logging output.

Possible values:

• stdout – Standard output.

• stderr – Standard error output.

• syslog – Syslog or systemd journal.

• file_name – A specific file.

With syslog target, syslog service is used. However, if Knot DNS has been compiled with systemd support and
operating system has been booted with systemd, systemd journal is used for logging instead of syslog.

A file_name may be specified as an absolute path or a path relative to the knotd startup directory.

7.9.2 server

Minimum severity level for messages related to general operation of the server to be logged.

Default: not set

7.9.3 control

Minimum severity level for messages related to server control to be logged.

Default: not set

7.9.4 zone

Minimum severity level for messages related to zones to be logged.

Default: not set

7.9.5 quic

Minimum severity level for messages related to QUIC to be logged.

Default: not set

7.9.6 any

Minimum severity level for all message types, except quic, to be logged.

Default: not set

7.9. log section 68

Knot DNS Documentation, Release 3.4.0

7.10 statistics section

Periodic server statistics dumping.

statistics:
timer: TIME
file: STR
append: BOOL

7.10.1 timer

A period (in seconds) after which all available statistics metrics will by written to the file.

Default: not set

7.10.2 file

A file path of statistics output in the YAML format.

Default: rundir/stats.yaml

7.10.3 append

If enabled, the output will be appended to the file instead of file replacement.

Default: off

7.11 database section

Configuration of databases for zone contents, DNSSEC metadata, or event timers.

database:
storage: STR
journal-db: STR
journal-db-mode: robust | asynchronous
journal-db-max-size: SIZE
kasp-db: STR
kasp-db-max-size: SIZE
timer-db: STR
timer-db-max-size: SIZE
catalog-db: str
catalog-db-max-size: SIZE

7.11.1 storage

A data directory for storing journal, KASP, and timer databases. A non-absolute path is relative to the knotd startup
directory.

Default: ${localstatedir}/lib/knot (configured with --with-storage=path)

7.10. statistics section 69

Knot DNS Documentation, Release 3.4.0

7.11.2 journal-db

An explicit specification of the persistent journal database directory.

Default: storage/journal

7.11.3 journal-db-mode

Specifies journal LMDB backend configuration, which influences performance and durability.

Possible values:

• robust – The journal database disk synchronization ensures database durability but is generally slower.

• asynchronous – The journal database disk synchronization is optimized for better performance at the ex-
pense of lower database durability in the case of a crash. This mode is recommended on secondary servers
with many zones.

Default: robust

7.11.4 journal-db-max-size

The hard limit for the journal database maximum size. There is no cleanup logic in journal to recover from reaching
this limit. Journal simply starts refusing changes across all zones. Decreasing this value has no effect if it is lower
than the actual database file size.

It is recommended to limit journal-max-usage per-zone instead of journal-db-max-size in most cases. Please keep
this value larger than the sum of all zones' journal usage limits. See more details regarding journal behaviour.

Note: This value also influences server's usage of virtual memory.

Default: 20G (20 GiB), or 512M (512 MiB) for 32-bit

7.11.5 kasp-db

An explicit specification of the KASP database directory.

Default: storage/keys

7.11.6 kasp-db-max-size

The hard limit for the KASP database maximum size.

Note: This value also influences server's usage of virtual memory.

Default: 500M (500 MiB)

7.11. database section 70

Knot DNS Documentation, Release 3.4.0

7.11.7 timer-db

An explicit specification of the persistent timer database directory.

Default: storage/timers

7.11.8 timer-db-max-size

The hard limit for the timer database maximum size.

Note: This value also influences server's usage of virtual memory.

Default: 100M (100 MiB)

7.11.9 catalog-db

An explicit specification of the zone catalog database directory. Only useful if Catalog zones are enabled.

Default: storage/catalog

7.11.10 catalog-db-max-size

The hard limit for the catalog database maximum size.

Note: This value also influences server's usage of virtual memory.

Default: 20G (20 GiB), or 512M (512 MiB) for 32-bit

7.12 keystore section

DNSSEC keystore configuration.

keystore:
- id: STR
backend: pem | pkcs11
config: STR
key-label: BOOL

7.12.1 id

A keystore identifier.

7.12. keystore section 71

Knot DNS Documentation, Release 3.4.0

7.12.2 backend

A key storage backend type.

Possible values:

• pem – PEM files.

• pkcs11 – PKCS #11 storage.

Default: pem

7.12.3 config

A backend specific configuration. A directory with PEM files (the path can be specified as a relative path to kasp-
db) or a configuration string for PKCS #11 storage (<pkcs11-uri> <module-path>). The PKCS #11 URI Scheme
is defined in RFC 7512.

Note: Example configuration string for PKCS #11:

"pkcs11:token=knot;pin-value=1234 /usr/lib64/pkcs11/libsofthsm2.so"

Default: kasp-db/keys

7.12.4 key-label

If enabled in combination with the PKCS #11 backend, generated keys are labeled in the form <zone_name>
KSK|ZSK.

Default: off

7.13 key section

Shared TSIG keys used to authenticate communication with the server.

key:
- id: DNAME
algorithm: hmac-md5 | hmac-sha1 | hmac-sha224 | hmac-sha256 | hmac-sha384 | hmac-

→˓sha512
secret: BASE64

7.13.1 id

A key name identifier.

Note: This value MUST be exactly the same as the name of the TSIG key on the opposite primary/secondary
server(s).

7.13. key section 72

https://datatracker.ietf.org/doc/html/rfc7512.html

Knot DNS Documentation, Release 3.4.0

7.13.2 algorithm

A TSIG key algorithm. See TSIG Algorithm Numbers.

Possible values:

• hmac-md5

• hmac-sha1

• hmac-sha224

• hmac-sha256

• hmac-sha384

• hmac-sha512

Default: not set

7.13.3 secret

Shared key secret.

Default: not set

7.14 remote section

Definitions of remote servers for outgoing connections (source of a zone transfer, target for a notification, etc.).

remote:
- id: STR
address: ADDR[@INT] | STR ...
via: ADDR[@INT] ...
quic: BOOL
tls: BOOL
key: key_id
cert-key: BASE64 ...
block-notify-after-transfer: BOOL
no-edns: BOOL
automatic-acl: BOOL

7.14.1 id

A remote identifier.

7.14.2 address

An ordered list of destination IP addresses or UNIX socket paths which are used for communication with the remote
server. Non-absolute path (i.e. not starting with /) is relative to rundir. Optional destination port (default is 53
for UDP/TCP and 853 for QUIC) can be appended to the address using @ separator. The addresses are tried in
sequence until the remote is reached.

Default: not set

Note: If the remote is contacted and it refuses to perform requested action, no more addresses will be tried for
this remote.

7.14. remote section 73

https://www.iana.org/assignments/tsig-algorithm-names/tsig-algorithm-names.xhtml

Knot DNS Documentation, Release 3.4.0

7.14.3 via

An ordered list of source IP addresses which are used as source addresses for communication with the remote. For
the N-th remote address, the last, but at most N-th, specified via address of the same family is used. This option
can help if the server listens on more addresses. Optional source port (default is random) can be appended to the
address using @ separator.

Default: not set

Note: For the following configuration:

remote:
- id: example
address: [198.51.100.10, 2001:db8::10, 198.51.100.20, 2001:db8::20]
via: [198.51.100.1, 198.51.100.2, 2001:db8::1]

the (via -> address) mapping is:

• 198.51.100.1 -> 198.51.100.10

• 2001:db8::1 -> 2001:db8::10

• 198.51.100.2 -> 198.51.100.20

• 2001:db8::1 -> 2001:db8::20

7.14.4 quic

If this option is set, the QUIC protocol will be used for outgoing communication with this remote.

Note: One connection per each remote is opened; remote-pool-limit does not take effect for QUIC. However, fast
QUIC handshakes utilizing obtained session tickets are used for reopening connections to recently (up to 1 day)
queried remotes.

Default: off

7.14.5 tls

If this option is set, the TLS (DoT) protocol will be used for outgoing communication with this remote.

Default: off

7.14.6 key

A reference to the TSIG key which is used to authenticate the communication with the remote server.

Default: not set

7.14. remote section 74

Knot DNS Documentation, Release 3.4.0

7.14.7 cert-key

An ordered list of remote certificate public key PINs. If the list is non-empty, communication with the remote is
possible only via QUIC protocol and a peer certificate is required. The peer certificate key must match one of the
specified PINs.

A PIN is a unique identifier that represents the public key of the peer certificate. It's a base64-encoded SHA-256
hash of the public key. This identifier remains the same on a certificate renewal.

Default: not set

7.14.8 block-notify-after-transfer

When incoming AXFR/IXFR from this remote (as a primary server), suppress sending NOTIFY messages to all
configured secondary servers.

Default: off

7.14.9 no-edns

If enabled, no OPT record (EDNS) is inserted to outgoing requests to this remote server. This mode is necessary
for communication with some broken implementations (e.g. Windows Server 2016).

Note: This option effectively disables zone expire timer updates via EDNS EXPIRE option specified in RFC
7314.

Default: off

7.14.10 automatic-acl

If enabled, some authorized operations for the remote are automatically allowed based on the context:

• Incoming NOTIFY is allowed from the remote if it's configured as a primary server for the zone.

• Outgoing zone transfer is allowed to the remote if it's configured as a NOTIFY target for the zone.

Automatic ACL rules are evaluated before explicit zone ACL configuration.

Note: This functionality requires global activation via automatic-acl in the server section.

Default: on

7.15 remotes section

Definitions of groups of remote servers. Remote grouping can simplify the configuration.

remotes:
- id: STR
remote: remote_id ...

7.15. remotes section 75

https://datatracker.ietf.org/doc/html/rfc7314.html
https://datatracker.ietf.org/doc/html/rfc7314.html

Knot DNS Documentation, Release 3.4.0

7.15.1 id

A remote group identifier.

7.15.2 remote

An ordered list of references to remote server definitions.

Default: not set

7.16 acl section

Access control list rule definitions. An ACL rule is a description of one or more authorized actions (zone transfer
request, zone change notification, and dynamic DNS update) which are allowed to be processed or denied. Normal
DNS queries are always allowed.

acl:
- id: STR
address: ADDR[/INT] | ADDR-ADDR | STR ...
key: key_id ...
cert-key: BASE64 ...
remote: remote_id | remotes_id ...
action: query | notify | transfer | update ...
deny: BOOL
update-type: STR ...
update-owner: key | zone | name
update-owner-match: sub-or-equal | equal | sub | pattern
update-owner-name: STR ...

7.16.1 id

An ACL rule identifier.

7.16.2 address

An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. The query's
source address must match one of them. If this item is not set, address match is not required.

Default: not set

7.16.3 key

An ordered list of references to TSIG keys. The query must match one of them. If this item is not set, transaction
authentication is not used.

Default: not set

7.16. acl section 76

Knot DNS Documentation, Release 3.4.0

7.16.4 cert-key

An ordered list of remote certificate public key PINs. If the list is non-empty, communication with the remote is
possible only via QUIC protocol and a peer certificate is required. The peer certificate key must match one of the
specified PINs.

A PIN is a unique identifier that represents the public key of the peer certificate. It's a base64-encoded SHA-256
hash of the public key. This identifier remains the same on a certificate renewal.

Default: not set

7.16.5 remote

An ordered list of references remote and remotes. The query must match one of the remotes. Specifically, one of
the remote's addresses and remote's TSIG key if configured must match.

Note: This option cannot be specified along with the address or key option at one ACL item.

Default: not set

7.16.6 action

An ordered list of allowed, or denied, actions (request types).

Possible values:

• query – Allow regular DNS query. As normal queries are always allowed, this action is only useful in
combination with TSIG key.

• notify – Allow incoming notify (NOTIFY).

• transfer – Allow zone transfer (AXFR, IXFR).

• update – Allow zone updates (DDNS).

Default: query

7.16.7 deny

If enabled, instead of allowing, deny the specified action, address, key, or combination if these items. If no action
is specified, deny all actions.

Default: off

7.16.8 update-type

A list of allowed types of Resource Records in a zone update. Every record in an update must match one of the
specified types.

Default: not set

7.16. acl section 77

Knot DNS Documentation, Release 3.4.0

7.16.9 update-owner

This option restricts possible owners of Resource Records in a zone update by comparing them to either the TSIG
key identity, the current zone name, or to a list of domain names given by the update-owner-name option. The
comparison method is given by the update-owner-match option.

Possible values:

• key — The owner of each updated RR must match the identity of the TSIG key if used.

• name — The owner of each updated RR must match at least one name in the update-owner-name list.

• zone — The owner of each updated RR must match the current zone name.

Default: not set

7.16.10 update-owner-match

This option defines how the owners of Resource Records in an update are matched to the domain name(s) set by
the update-owner option.

Possible values:

• sub-or-equal — The owner of each RR in an update must either be equal to or be a subdomain of at least
one domain name set by update-owner.

• equal — The owner of each updated RR must be equal to at least one domain name set by update-owner.

• sub — The owner of each updated RR must be a subdomain of, but MUST NOT be equal to at least one
domain name set by update-owner.

• pattern — The owner of each updated RR must match a pattern specified by update-owner. The pattern
can be an arbitrary FQDN or non-FQDN domain name. If a label consists of one * (asterisk) character, it
matches any label. More asterisk labels can be specified.

Default: sub-or-equal

7.16.11 update-owner-name

A list of allowed owners of RRs in a zone update used with update-owner set to name. Every listed owner name
which is not FQDN (i.e. it doesn't end in a dot) is considered as if it was appended with the target zone name. Such
a relative owner name specification allows better ACL rule reusability across multiple zones.

Default: not set

7.17 submission section

Parameters of KSK submission checks.

submission:
- id: STR
parent: remote_id | remotes_id ...
check-interval: TIME
timeout: TIME
parent-delay: TIME

7.17. submission section 78

Knot DNS Documentation, Release 3.4.0

7.17.1 id

A submission identifier.

7.17.2 parent

A list of references remote and remotes to parent's DNS servers to be checked for presence of corresponding DS
records in the case of KSK submission. All of them must have a corresponding DS for the rollover to continue. If
none is specified, the rollover must be pushed forward manually.

Default: not set

Tip: A DNSSEC-validating resolver can be set as a parent.

7.17.3 check-interval

Interval (in seconds) for periodic checks of DS presence on parent's DNS servers, in the case of the KSK submission.

Default: 1h (1 hour)

7.17.4 timeout

After this time period (in seconds) the KSK submission is automatically considered successful, even if all the
checks were negative or no parents are configured. Set to 0 for infinity.

Default: 0

7.17.5 parent-delay

After successful parent DS check, wait for this period (in seconds) before continuing the next key roll-over step.
This delay shall cover the propagation delay of update in the parent zone.

Default: 0

7.18 dnskey-sync section

Parameters of DNSKEY dynamic-update synchronization.

dnskey-sync:
- id: STR
remote: remote_id | remotes_id ...
check-interval: TIME

7.18. dnskey-sync section 79

Knot DNS Documentation, Release 3.4.0

7.18.1 id

A dnskey-sync identifier.

7.18.2 remote

A list of references remote and remotes to other signers or common master, which the DDNS updates with
DNSKEY/CDNSKEY/CDS records shall be sent to.

Default: not set

7.18.3 check-interval

If the last DNSKEY sync failed or resulted in any change, re-check the consistence after this interval (in seconds)
and re-try if needed.

Default: 60 (1 minute)

7.19 policy section

DNSSEC policy configuration.

policy:
- id: STR
keystore: keystore_id
manual: BOOL
single-type-signing: BOOL
algorithm: rsasha1 | rsasha1-nsec3-sha1 | rsasha256 | rsasha512 | ecdsap256sha256␣

→˓| ecdsap384sha384 | ed25519 | ed448
ksk-size: SIZE
zsk-size: SIZE
ksk-shared: BOOL
dnskey-ttl: TIME
zone-max-ttl: TIME
keytag-modulo: INT/INT
ksk-lifetime: TIME
zsk-lifetime: TIME
delete-delay: TIME
propagation-delay: TIME
rrsig-lifetime: TIME
rrsig-refresh: TIME
rrsig-pre-refresh: TIME
reproducible-signing: BOOL
nsec3: BOOL
nsec3-iterations: INT
nsec3-opt-out: BOOL
nsec3-salt-length: INT
nsec3-salt-lifetime: TIME
signing-threads: INT
ksk-submission: submission_id
ds-push: remote_id | remotes_id ...
cds-cdnskey-publish: none | delete-dnssec | rollover | always | double-ds
cds-digest-type: sha256 | sha384
dnskey-management: full | incremental
offline-ksk: BOOL

(continues on next page)

7.19. policy section 80

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

unsafe-operation: none | no-check-keyset | no-update-dnskey | no-update-nsec | no-
→˓update-expired ...

7.19.1 id

A policy identifier.

7.19.2 keystore

A reference to a keystore holding private key material for zones.

Default: an imaginary keystore with all default values

Note: A configured keystore called "default" won't be used unless explicitly referenced.

7.19.3 manual

If enabled, automatic key management is not used.

Default: off

7.19.4 single-type-signing

If enabled, Single-Type Signing Scheme is used in the automatic key management mode.

Default: off (module onlinesign has default on)

7.19.5 algorithm

An algorithm of signing keys and issued signatures. See DNSSEC Algorithm Numbers.

Possible values:

• rsasha1

• rsasha1-nsec3-sha1

• rsasha256

• rsasha512

• ecdsap256sha256

• ecdsap384sha384

• ed25519

• ed448

Note: Ed448 algorithm is only available if compiled with GnuTLS 3.6.12+ and Nettle 3.6+.

Default: ecdsap256sha256

7.19. policy section 81

https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml#dns-sec-alg-numbers-1

Knot DNS Documentation, Release 3.4.0

7.19.6 ksk-size

A length of newly generated KSK (Key Signing Key) or CSK (Combined Signing Key) keys.

Default: 2048 (rsa*), 256 (ecdsap256), 384 (ecdsap384), 256 (ed25519), 456 (ed448)

7.19.7 zsk-size

A length of newly generated ZSK (Zone Signing Key) keys.

Default: see default for ksk-size

7.19.8 ksk-shared

If enabled, all zones with this policy assigned will share one or more KSKs. More KSKs can be shared during a
KSK rollover.

Warning: As the shared KSK set is bound to the policy id, renaming the policy breaks this connection and
new shared KSK set is initiated when a new KSK is needed.

Default: off

7.19.9 dnskey-ttl

A TTL value for DNSKEY records added into zone apex.

Note: Has influence over ZSK key lifetime.

Warning: Ensure all DNSKEYs with updated TTL are propagated before any subsequent DNSKEY rollover
starts.

Default: zone SOA TTL

7.19.10 zone-max-ttl

Declare (override) maximal TTL value among all the records in zone.

Note: It's generally recommended to override the maximal TTL computation by setting this explicitly whenever
possible. It's required for DNSSEC Offline KSK and really reasonable when records are generated dynamically
(e.g. by a module).

Default: computed after zone is loaded

7.19. policy section 82

Knot DNS Documentation, Release 3.4.0

7.19.11 keytag-modulo

Specifies that the keytags of any generated keys shall be congruent by specified modulo. The option value must be
a string in the format R/M, where R < M <= 256 are positive integers. Whenever a DNSSEC key is generated, it is
ensured that keytag % M == R. This prevents keytag conflict in DNSSEC Offline KSK or DNSSEC multi-signer
(and possibly other) setups.

Note: This only applies to newly generated keys when they are generated. Keys from before this option and keys
imported from elsewhere might not fulfill the policy.

Default: 0/1

7.19.12 ksk-lifetime

A period (in seconds) between KSK generation and the next rollover initiation.

Note: KSK key lifetime is also influenced by propagation-delay, dnskey-ttl, and KSK submission delay.

Zero (aka infinity) value causes no KSK rollover as a result.

This applies for CSK lifetime if single-type-signing is enabled.

Default: 0 (infinity)

7.19.13 zsk-lifetime

A period (in seconds) between ZSK activation and the next rollover initiation.

Note: More exactly, this period is measured since a ZSK is activated, and after this, a new ZSK is generated to
replace it within following roll-over.

As a consequence, in normal operation, this results in the period of ZSK generation being zsk-lifetime +
propagation-delay + dnskey_ttl.

Zero (aka infinity) value causes no ZSK rollover as a result.

Default: 30d (30 days)

7.19.14 delete-delay

Once a key (KSK or ZSK) is rolled-over and removed from the zone, keep it in the KASP database for at least
this period (in seconds) before deleting it completely. This might be useful in some troubleshooting cases when
resurrection is needed.

Default: 0

7.19. policy section 83

Knot DNS Documentation, Release 3.4.0

7.19.15 propagation-delay

An extra delay added for each key rollover step. This value (in seconds) should be high enough to cover propagation
of data from the primary server to all secondary servers, as well as the duration of signing routine itself and possible
outages in signing and propagation infrastructure. In other words, this delay should ensure that within this period
of time after planned change of the key set, all public-facing secondaries will already serve new DNSKEY RRSet
for sure.

Note: Has influence over ZSK key lifetime.

Default: 1h (1 hour)

7.19.16 rrsig-lifetime

A validity period (in seconds) of newly issued signatures.

Note: The RRSIG's signature inception time is set to 90 minutes in the past. This time period is not counted to
the signature lifetime.

Default: 14d (14 days)

7.19.17 rrsig-refresh

A period (in seconds) how long at least before a signature expiration the signature will be refreshed, in order to
prevent expired RRSIGs on secondary servers or resolvers' caches.

Default: 0.1 * rrsig-lifetime + propagation-delay + zone-max-ttl

If dnssec-validation is enabled:

Default: 1d (1 day)

7.19.18 rrsig-pre-refresh

A period (in seconds) how long at most before a signature refresh time the signature might be refreshed, in order
to refresh RRSIGs in bigger batches on a frequently updated zone (avoid re-sign event too often).

Default: 1h (1 hour)

7.19.19 reproducible-signing

For ECDSA algorithms, generate RRSIG signatures deterministically (RFC 6979). Besides better theoretical cryp-
tographic security, this mode allows significant speed-up of loading signed (by the same method) zones. However,
the zone signing is a bit slower.

Default: off

7.19. policy section 84

https://datatracker.ietf.org/doc/html/rfc6979.html

Knot DNS Documentation, Release 3.4.0

7.19.20 nsec3

Specifies if NSEC3 will be used instead of NSEC.

Default: off

7.19.21 nsec3-iterations

A number of additional times the hashing is performed.

Default: 0

7.19.22 nsec3-opt-out

If set, NSEC3 records won't be created for insecure delegations. This speeds up the zone signing and reduces
overall zone size.

Warning: NSEC3 with the Opt-Out bit set no longer works as a proof of non-existence in this zone.

Default: off

7.19.23 nsec3-salt-length

A length of a salt field in octets, which is appended to the original owner name before hashing.

Default: 8

7.19.24 nsec3-salt-lifetime

A validity period (in seconds) of newly issued salt field.

Zero value means infinity.

Special value -1 triggers re-salt every time when active ZSK changes. This optimizes the number of big changes
to the zone.

Default: 30d (30 days)

7.19.25 signing-threads

When signing zone or update, use this number of threads for parallel signing.

Those are extra threads independent of Background workers.

Note: Some steps of the DNSSEC signing operation are not parallelized.

Default: 1 (no extra threads)

7.19. policy section 85

Knot DNS Documentation, Release 3.4.0

7.19.26 ksk-submission

A reference to submission section holding parameters of KSK submission checks.

Default: not set

7.19.27 ds-push

Optional references remote and remotes to authoritative DNS server of the parent's zone. The remote server must
be configured to accept DS record updates via DDNS. Whenever a CDS record in the local zone is changed, the
corresponding DS record is sent as a dynamic update (DDNS) to the parent DNS server. All previous DS records
are deleted within the DDNS message. It's possible to manage both child and parent zones by the same Knot DNS
server.

Note: This feature requires cds-cdnskey-publish not to be set to none.

Note: The mentioned change to CDS record usually means that a KSK roll-over is running and the new key being
rolled-in is in "ready" state already for the period of propagation-delay.

Note: Module Onlinesign doesn't support DS push.

Note: When turning this feature on while a KSK roll-over is already running, it might not take effect for the
already-running roll-over.

Default: not set

7.19.28 dnskey-sync

A reference to dnskey-sync section holding parameters of DNSKEY synchronization.

Default: not set

7.19.29 cds-cdnskey-publish

Controls if and how shall the CDS and CDNSKEY be published in the zone.

Possible values:

• none – Never publish any CDS or CDNSKEY records in the zone.

• delete-dnssec – Publish special CDS and CDNSKEY records indicating turning off DNSSEC.

• rollover – Publish CDS and CDNSKEY records for ready and not yet active KSK (submission phase of
KSK rollover).

• always – Always publish one CDS and one CDNSKEY records for the current KSK.

• double-ds – Always publish up to two CDS and two CDNSKEY records for ready and/or active KSKs.

Note: If the zone keys are managed manually, the CDS and CDNSKEY rrsets may contain more records depending
on the keys available.

7.19. policy section 86

Knot DNS Documentation, Release 3.4.0

Warning: The double-ds value does not trigger double-DS roll-over method. That method is only supported
when performed manually, with unset ksk-submission.

Default: rollover

7.19.30 cds-digest-type

Specify digest type for published CDS records.

Default: sha256

7.19.31 dnskey-management

Specify how the DNSKEY, CDNSKEY, and CDS RRSets at the zone apex are handled when (re-)signing the zone.

Possible values:

• full – Upon every zone (re-)sign, delete all unknown DNSKEY, CDNSKEY, and CDS records and keep
just those that are related to the zone keys stored in the KASP database.

• incremental – Keep unknown DNSKEY, CDNSKEY, and CDS records in the zone, and modify server-
managed records incrementally by employing changes in the KASP database.

Note: Prerequisites for incremental:

• The Offline KSK isn't supported.

• The delete-delay is long enough to cover possible daemon shutdown (e.g. due to server maintenance).

• Avoided manual deletion of keys with keymgr.

Otherwise there might remain some DNSKEY records in the zone, belonging to deleted keys.

Default: full

7.19.32 offline-ksk

Specifies if Offline KSK feature is enabled.

Default: off

7.19.33 unsafe-operation

Turn off some DNSSEC safety features.

Possible values:

• none – Nothing disabled.

• no-check-keyset – Don't check active keys in present algorithms. This may lead to violation of RFC
4035#section-2.2.

• no-update-dnskey – Don't maintain/update DNSKEY, CDNSKEY, and CDS records in the zone apex
according to KASP database. Juste leave them as they are in the zone.

• no-update-nsec – Don't maintain/update NSEC/NSEC3 chain. Leave all the records as they are in the
zone.

• no-update-expired – Don't update expired RRSIGs.

7.19. policy section 87

https://datatracker.ietf.org/doc/html/rfc4035.html#section-2.2
https://datatracker.ietf.org/doc/html/rfc4035.html#section-2.2

Knot DNS Documentation, Release 3.4.0

Multiple values may be specified.

Warning: This mode is intended for DNSSEC experts who understand the corresponding consequences.

Default: none

7.20 template section

A template is shareable zone settings, which can simplify configuration by reducing duplicates. A special default
template (with the default identifier) can be used for global zone configuration or as an implicit configuration if a
zone doesn't have another template specified.

template:
- id: STR
global-module: STR/STR ...
All zone options (excluding 'template' item)

Note: If an item is explicitly specified both in the referenced template and the zone, the template item value is
overridden by the zone item value.

7.20.1 id

A template identifier.

7.20.2 global-module

An ordered list of references to query modules in the form of module_name or module_name/module_id. These
modules apply to all queries.

Note: This option is only available in the default template.

Default: not set

7.21 zone section

Definition of zones served by the server.

zone:
- domain: DNAME
template: template_id
storage: STR
file: STR
master: remote_id | remotes_id ...
ddns-master: remote_id
notify: remote_id | remotes_id ...
acl: acl_id ...
master-pin-tolerance: TIME
provide-ixfr: BOOL

(continues on next page)

7.20. template section 88

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

semantic-checks: BOOL | soft
default-ttl: TIME
zonefile-sync: TIME
zonefile-load: none | difference | difference-no-serial | whole
journal-content: none | changes | all
journal-max-usage: SIZE
journal-max-depth: INT
ixfr-benevolent: BOOL
ixfr-by-one: BOOL
ixfr-from-axfr: BOOL
zone-max-size : SIZE
adjust-threads: INT
dnssec-signing: BOOL
dnssec-validation: BOOL
dnssec-policy: policy_id
ds-push: remote_id | remotes_id ...
zonemd-verify: BOOL
zonemd-generate: none | zonemd-sha384 | zonemd-sha512 | remove
serial-policy: increment | unixtime | dateserial
serial-modulo: INT/INT
reverse-generate: DNAME
refresh-min-interval: TIME
refresh-max-interval: TIME
retry-min-interval: TIME
retry-max-interval: TIME
expire-min-interval: TIME
expire-max-interval: TIME
catalog-role: none | interpret | generate | member
catalog-template: template_id ...
catalog-zone: DNAME
catalog-group: STR
module: STR/STR ...

7.21.1 domain

A zone name identifier.

7.21.2 template

A reference to a configuration template.

Default: not set or default (if the template exists)

7.21.3 storage

A data directory for storing zone files. A non-absolute path is relative to the knotd startup directory.

Default: ${localstatedir}/lib/knot (configured with --with-storage=path)

7.21. zone section 89

Knot DNS Documentation, Release 3.4.0

7.21.4 file

A path to the zone file. It is also possible to use the following formatters:

• %c[N] or %c[N-M] – Means the N th character or a sequence of characters beginning from the N th and
ending with the Mth character of the textual zone name (see %s). The indexes are counted from 0 from the
left. All dots (including the terminal one) are considered. If the character is not available, the formatter has
no effect.

• %l[N] – Means the N th label of the textual zone name (see %s). The index is counted from 0 from the right
(0 ~ TLD). If the label is not available, the formatter has no effect.

• %s – Means the current zone name in the textual representation. The zone name doesn't include the termi-
nating dot (the result for the root zone is the empty string!).

• %% – Means the % character.

Warning: Beware of special characters which are escaped or encoded in the \DDD form where DDD is
corresponding decimal ASCII code.

Default: storage/%s.zone

7.21.5 master

An ordered list of references remote and remotes to zone primary servers (formerly known as master servers).
Empty value is allowed for template value overriding.

Default: not set

7.21.6 ddns-master

A reference to a zone primary master where DDNS messages should be forwarded to. If not specified, the first
master server is used.

If set to the empty value (""), incoming DDNS messages aren't forwarded but are applied to the local zone instead,
no matter if it is a secondary server. This is only allowed in combination with dnssec-signing enabled.

Default: not set

7.21.7 notify

An ordered list of references remote and remotes to secondary servers to which notify message is sent if the zone
changes. Empty value is allowed for template value overriding.

Default: not set

7.21.8 acl

An ordered list of references to ACL rules which can allow or disallow zone transfers, updates or incoming notifies.

Default: not set

7.21. zone section 90

Knot DNS Documentation, Release 3.4.0

7.21.9 master-pin-tolerance

If set to a nonzero value on a secondary, always request AXFR/IXFR from the same primary as the last time,
effectively pinning one primary. Only when another primary is updated and the current one lags behind for the
specified amount of time (defined by this option in seconds), change to the updated primary and force AXFR.

This option is useful when multiple primaries may have different zone history in their journals, making it unsafe
to combine interchanged IXFR from different primaries.

Default: 0 (disabled)

7.21.10 provide-ixfr

If disabled, the server is forced to respond with AXFR to IXFR queries. If enabled, IXFR requests are responded
normally.

Default: on

7.21.11 semantic-checks

Selects if extra zone semantic checks are used or impacts of the mandatory checks.

There are several mandatory checks which are always enabled and cannot be turned off. An error in a mandatory
check causes the zone not to be loaded. Most of the mandatory checks can be weakened by setting soft, which
allows the zone to be loaded even if the check fails.

If enabled, extra checks are used. These checks don't prevent the zone from loading.

The mandatory checks are applied to zone files, zone transfers, and updates via control interface. The extra checks
are applied to zone files only!

Mandatory checks:

• Missing SOA record at the zone apex (RFC 1034) (*)

• An extra record exists together with a CNAME record except for RRSIG and NSEC (RFC 1034)

• Multiple CNAME records with the same owner exist (RFC 1034)

• DNAME record having a record under it (RFC 6672)

• Multiple DNAME records with the same owner exist (RFC 6672)

• NS record exists together with a DNAME record (RFC 6672)

• DS record exists at the zone apex (RFC 3658)

(*) The marked check can't be weakened by the soft mode. All other mandatory checks are subject to the optional
soft mode.

Extra checks:

• Missing NS record at the zone apex

• Missing glue A or AAAA record

• Invalid DS or NSEC3PARAM record

• CDS or CDNSKEY inconsistency

• All other DNSSEC checks executed during dnssec-validation

Note: The soft mode allows the refresh event to ignore a CNAME response to a SOA query (malformed message)
and triggers a zone bootstrap instead.

Default: off

7.21. zone section 91

https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc6672.html
https://datatracker.ietf.org/doc/html/rfc6672.html
https://datatracker.ietf.org/doc/html/rfc6672.html
https://datatracker.ietf.org/doc/html/rfc3658.html

Knot DNS Documentation, Release 3.4.0

7.21.12 default-ttl

The default TTL value if none is specified in a zone file or zone insertion using the dynamic configuration.

Warning: As changing this value can result in differently parsed zone file(s), the corresponding zone SOA
serial(s) should be incremented before reloading or commiting the configuration. Alternatively, setting zonefile-
load to difference-no-serial ensures the resulting zone(s) update is correct.

Default: 3600

7.21.13 zonefile-sync

The time in seconds after which the current zone in memory will be synced with a zone file on the disk (see file).
The server will serve the latest zone even after a restart using zone journal, but the zone file on the disk will only
be synced after zonefile-sync time has expired (or after manual zone flush). This is applicable when the zone
is updated via IXFR, DDNS or automatic DNSSEC signing. In order to completely disable automatic zone file
synchronization, set the value to -1. In that case, it is still possible to force a manual zone flush using the -f option.

Note: If you are serving large zones with frequent updates where the immediate sync with a zone file is not
desirable, increase the value.

Default: 0 (immediate)

7.21.14 zonefile-load

Selects how the zone file contents are applied during zone load.

Possible values:

• none – The zone file is not used at all.

• difference – If the zone contents are already available during server start or reload, the difference is
computed between them and the contents of the zone file. This difference is then checked for semantic errors
and applied to the current zone contents.

• difference-no-serial – Same as difference, but the SOA serial in the zone file is ignored, the server
takes care of incrementing the serial automatically.

• whole – Zone contents are loaded from the zone file.

When difference is configured and there are no zone contents yet (cold start and no zone contents in the journal),
it behaves the same way as whole.

Default: whole

Note: See Handling zone file, journal, changes, serials for guidance on configuring these and related options to
ensure reliable operation.

7.21. zone section 92

Knot DNS Documentation, Release 3.4.0

7.21.15 journal-content

Selects how the journal shall be used to store zone and its changes.

Possible values:

• none – The journal is not used at all.

• changes – Zone changes history is stored in journal.

• all – Zone contents and history is stored in journal.

Default: changes

Warning: When this option is changed, the journal still contains data respective to the previous setting. For
example, changing it to none does not purge the journal. Also, changing it from all to changes does not
cause the deletion of the zone-in-journal and the behaviour of the zone loading procedure might be different
than expected. It is recommended to consider purging the journal when this option is changed.

7.21.16 journal-max-usage

Policy how much space in journal DB will the zone's journal occupy.

Note: Journal DB may grow far above the sum of journal-max-usage across all zones, because of DB free space
fragmentation.

Default: 100M (100 MiB)

7.21.17 journal-max-depth

Maximum history length of the journal.

Note: Zone-in-journal changeset isn't counted to the limit.

Minimum: 2

Default: 20

7.21.18 ixfr-benevolent

If enabled, incoming IXFR is applied even when it contains removals of non-existing or additions of existing
records.

Default: off

7.21. zone section 93

Knot DNS Documentation, Release 3.4.0

7.21.19 ixfr-by-one

Within incoming IXFR, process only one changeset at a time, not multiple together. This preserves the complete
history in the journal and prevents the merging of changesets when multiple changesets are IXFRed simultaneously.
However, this does not prevent the merging (or deletion) of old changesets in the journal to save space, as described
in journal behaviour.

This option leads to increased server load when processing IXFR, including network traffic.

Default: off

7.21.20 ixfr-from-axfr

If a primary sends AXFR-style-IXFR upon an IXFR request, compute the difference and process it as an incremental
zone update (e.g. by storing the changeset in the journal).

Default: off

7.21.21 zone-max-size

Maximum size of the zone. The size is measured as size of the zone records in wire format without compression.
The limit is enforced for incoming zone transfers and dynamic updates.

For incremental transfers (IXFR), the effective limit for the total size of the records in the transfer is twice the
configured value. However the final size of the zone must satisfy the configured value.

Default: unlimited

7.21.22 adjust-threads

Parallelize internal zone adjusting procedures by using specified number of threads. This is useful with huge zones
with NSEC3. Speedup observable at server startup and while processing NSEC3 re-salt.

Default: 1 (no extra threads)

7.21.23 dnssec-signing

If enabled, automatic DNSSEC signing for the zone is turned on.

Default: off

7.21.24 dnssec-validation

If enabled, the zone contents are validated for being correctly signed (including NSEC/NSEC3 chain) with
DNSSEC signatures every time the zone is loaded or changed (including AXFR/IXFR).

When the validation fails, the zone being loaded or update being applied is cancelled with an error, and either none
or previous zone state is published.

List of DNSSEC checks:

• Every zone RRSet is correctly signed by at least one present DNSKEY.

• For every RRSIG there are at most 3 non-matching DNSKEYs with the same keytag.

• DNSKEY RRSet is signed by KSK.

• NSEC(3) RR exists for each name (unless opt-out) with correct bitmap.

• Every NSEC(3) RR is linked to the lexicographically next one.

7.21. zone section 94

Knot DNS Documentation, Release 3.4.0

The validation is not affected by dnssec-policy configuration, except for signing-threads option, which specifies
the number of threads for parallel validation, and rrsig-refresh, which defines minimal allowed remaining RRSIG
validity (otherwise a warning is logged).

Note: Redundant or garbage NSEC3 records are ignored.

This mode is not compatible with dnssec-signing.

Default: not set

7.21.25 dnssec-policy

A reference to DNSSEC signing policy.

Note: A configured policy called "default" won't be used unless explicitly referenced.

Default: an imaginary policy with all default values

7.21.26 ds-push

Per zone configuration of ds-push. This option overrides possible per policy option. Empty value is allowed for
template value overriding.

Default: not set

7.21.27 zonemd-verify

On each zone load/update, verify that ZONEMD is present in the zone and valid.

Note: Zone digest calculation may take much time and CPU on large zones.

Default: off

7.21.28 zonemd-generate

On each zone update, calculate ZONEMD and put it into the zone.

Possible values:

• none – No action regarding ZONEMD.

• zonemd-sha384 – Generate ZONEMD using SHA384 algorithm.

• zonemd-sha512 – Generate ZONEMD using SHA512 algorithm.

• remove – Remove any ZONEMD from the zone apex.

Default: none

7.21. zone section 95

Knot DNS Documentation, Release 3.4.0

7.21.29 serial-policy

Specifies how the zone serial is updated after a dynamic update or automatic DNSSEC signing. If the serial is
changed by the dynamic update, no change is made.

Possible values:

• increment – The serial is incremented according to serial number arithmetic.

• unixtime – The serial is set to the current unix time.

• dateserial – The 10-digit serial (YYYYMMDDnn) is incremented, the first 8 digits match the current
iso-date.

Note: If the resulting serial for unixtime or dateserial is lower than or equal to the current serial (this happens
e.g. when migrating from other policy or frequent updates), the serial is incremented instead.

To avoid user confusion, use dateserial only if you expect at most 100 updates per day per zone and unixtime
only if you expect at most one update per second per zone.

Generated catalog zones use unixtime only.

Default: increment (unixtime for generated catalog zones)

7.21.30 serial-modulo

Specifies that the zone serials shall be congruent by specified modulo. The option value must be a string in the
format R/M, where R < M <= 256 are positive integers. Whenever the zone serial is incremented, it is ensured that
serial % M == R. This can be useful in the case of multiple inconsistent primaries, where distinct zone serial
sequences prevent cross-master-IXFR by any secondary.

Note: In order to ensure the congruent policy, this option is only allowed with DNSSEC signing enabled and
zonefile-load to be either difference-no-serial or none.

Because the zone serial effectively always increments by M instead of 1, it is not recommended to use dateserial
serial-policy or even unixtime in case of rapidly updated zone.

Default: 0/1

7.21.31 reverse-generate

This option triggers the automatic generation of reverse PTR records based on A/AAAA records in the specified
zone. The entire generated zone is automatically stored in the journal.

Current limitations:

• Only one zone to be reversed can be specified.

• Is slow for large zones (even when changing a little).

Default: none

7.21. zone section 96

Knot DNS Documentation, Release 3.4.0

7.21.32 refresh-min-interval

Forced minimum zone refresh interval (in seconds) to avoid flooding primary server.

Minimum: 2

Default: 2

7.21.33 refresh-max-interval

Forced maximum zone refresh interval (in seconds).

Default: not set

7.21.34 retry-min-interval

Forced minimum zone retry interval (in seconds) to avoid flooding primary server.

Minimum: 1

Default: 1

7.21.35 retry-max-interval

Forced maximum zone retry interval (in seconds).

Default: not set

7.21.36 expire-min-interval

Forced minimum zone expire interval (in seconds) to avoid flooding primary server.

Minimum: 3

Default: 3

7.21.37 expire-max-interval

Forced maximum zone expire interval (in seconds).

Default: not set

7.21.38 catalog-role

Trigger zone catalog feature. Possible values:

• none – Not a catalog zone.

• interpret – A catalog zone which is loaded from a zone file or XFR, and member zones shall be configured
based on its contents.

• generate – A catalog zone whose contents are generated according to assigned member zones.

• member – A member zone that is assigned to one generated catalog zone.

Note: If set to generate, the zonefile-load option has no effect since a zone file is never loaded.

Default: none

7.21. zone section 97

Knot DNS Documentation, Release 3.4.0

7.21.39 catalog-template

For the catalog member zones, the specified configuration template will be applied.

Multiple catalog templates may be defined. The first one is used unless the member zone has the group property
defined, matching another catalog template.

Note: This option must be set if and only if catalog-role is interpret.

Nested catalog zones aren't supported. Therefore catalog templates can't contain catalog-role set to interpret or
generate.

Default: not set

7.21.40 catalog-zone

Assign this member zone to specified generated catalog zone.

Note: This option must be set if and only if catalog-role is member.

The referenced catalog zone must exist and have catalog-role set to generate.

Default: not set

7.21.41 catalog-group

Assign this member zone to specified catalog group (configuration template).

Note: This option has effect if and only if catalog-role is member.

Default: not set

7.21.42 module

An ordered list of references to query modules in the form of module_name or module_name/module_id. These
modules apply only to the current zone queries.

Default: not set

7.21. zone section 98

CHAPTER

EIGHT

MODULES

8.1 authsignal – Automatic Authenticated DNSSEC Bootstrapping
records

This module is able to synthesize records for automatic DNSSEC bootstrapping (RFC 9615).

Records are synthesized only if the query can't be satisfied from the zone.

Synthesized records also need to be signed. Typically, this can be done using the onlinesign module, as shown
below.

8.1.1 Example

Automatic forward records

mod-onlinesign:
- id: authsignal
nsec-bitmap: [CDS, CDNSKEY]

zone:
- domain: example.net
dnssec-signing: on

- domain: _signal.ns1.example.com
module: [mod-authsignal, mod-onlinesign/authsignal]

Result:

$ kdig CDS _dsboot.example.net._signal.ns1.example.com.
...
;; QUESTION SECTION:
;; _dsboot.example.net._signal.ns1.example.com. IN CDS

;; ANSWER SECTION:
_dsboot.example.net._signal.ns1.example.com. 0 IN CDS 45504 13 2␣
→˓2F2D518FD9DBB2B1403F51398A9931F2832B89F0F85C146B130D383FC23584FA

99

https://datatracker.ietf.org/doc/html/rfc9615.html

Knot DNS Documentation, Release 3.4.0

8.2 cookies— DNS Cookies

DNS Cookies (RFC 7873) is a lightweight security mechanism against denial-of-service and amplification attacks.
The server keeps a secret value (the Server Secret), which is used to generate a cookie, which is sent to the client
in the OPT RR. The server then verifies the authenticity of the client by the presence of a correct cookie. Both the
server and the client have to support DNS Cookies, otherwise they are not used.

Note: This module introduces two statistics counters:

• presence – The number of queries containing the COOKIE option.

• dropped – The number of dropped queries due to the slip limit.

Warning: For effective module operation the RRL module must also be enabled and configured after Cookies.
See Query modules how to configure modules.

8.2.1 Example

It is recommended to enable DNS Cookies globally, not per zone. The module may be used without any further
configuration.

template:
- id: default
global-module: mod-cookies # Enable DNS Cookies globally

Module configuration may be supplied if necessary.

mod-cookies:
- id: default
secret-lifetime: 30h # The Server Secret is regenerated every 30 hours
badcookie-slip: 3 # The server replies only to every third query with a wrong␣

→˓cookie

template:
- id: default
global-module: mod-cookies/default # Enable DNS Cookies globally

The value of the Server Secret may also be managed manually using the secret option. In this case the server does
not automatically regenerate the Server Secret.

mod-cookies:
- id: default
secret: 0xdeadbeefdeadbeefdeadbeefdeadbeef

8.2. cookies— DNS Cookies 100

https://datatracker.ietf.org/doc/html/rfc7873.html

Knot DNS Documentation, Release 3.4.0

8.2.2 Module reference

mod-cookies:
- id: STR
secret-lifetime: TIME
badcookie-slip: INT
secret: STR | HEXSTR

id

A module identifier.

secret-lifetime

This option configures in seconds how often the Server Secret is regenerated. The maximum allowed value is 36
days (RFC 7873#section-7.1).

Default: 26h (26 hours)

badcookie-slip

This option configures how often the server responds to queries containing an invalid cookie by sending them the
correct cookie.

• The value 1 means that the server responds to every query.

• The value 2 means that the server responds to every second query with an invalid cookie, the rest of the
queries is dropped.

• The value N > 2 means that the server responds to every Nth query with an invalid cookie, the rest of the
queries is dropped.

Default: 1

secret

Use this option to set the Server Secret manually. If this option is used, the Server Secret remains the same until
changed manually and the secret-lifetime option is ignored. The size of the Server Secret currently MUST BE 16
bytes, or 32 hexadecimal characters.

Default: not set

8.3 dnsproxy – Tiny DNS proxy

The module forwards all queries, or all specific zone queries if configured per zone, to the indicated server for
resolution. If configured in the fallback mode, only locally unsatisfied queries are forwarded. I.e. a tiny DNS
proxy. There are several uses of this feature:

• A substitute public-facing server in front of the real one

• Local zones (poor man's "views"), rest is forwarded to the public-facing server

• Using the fallback to forward queries to a resolver

• etc.

8.3. dnsproxy – Tiny DNS proxy 101

https://datatracker.ietf.org/doc/html/rfc7873.html#section-7.1

Knot DNS Documentation, Release 3.4.0

Note: The module does not alter the query/response as the resolver would, and the original transport protocol is
kept as well.

8.3.1 Example

The configuration is straightforward and just a single remote server is required:

remote:
- id: hidden
address: 10.0.1.1

mod-dnsproxy:
- id: default
remote: hidden
fallback: on

template:
- id: default
global-module: mod-dnsproxy/default

zone:
- domain: local.zone

When clients query for anything in the local.zone, they will be responded to locally. The rest of the requests
will be forwarded to the specified server (10.0.1.1 in this case).

8.3.2 Module reference

mod-dnsproxy:
- id: STR
remote: remote_id
timeout: INT
address: ADDR[/INT] | ADDR-ADDR | STR ...
fallback: BOOL
tcp-fastopen: BOOL
catch-nxdomain: BOOL

id

A module identifier.

remote

A reference to a remote server where the queries are forwarded to.

Required

Note: If the remote has more addresses configured, other addresses are used sequentially as fallback. In this case,
for the N-th address the N-th via address is taken if configured.

8.3. dnsproxy – Tiny DNS proxy 102

Knot DNS Documentation, Release 3.4.0

timeout

A remote response timeout in milliseconds.

Default: 500 (milliseconds)

address

An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. If the query's
source address does not fall into any of the configured ranges, the query isn't forwarded.

Default: not set

fallback

If enabled, locally unsatisfied queries leading to REFUSED (no zone) are forwarded. If disabled, all queries are
directly forwarded without any local attempts to resolve them.

Default: on

tcp-fastopen

If enabled, TCP Fast Open is used when forwarding TCP queries.

Default: off

catch-nxdomain

If enabled, locally unsatisfied queries leading to NXDOMAIN are forwarded. This option is only relevant in the
fallback mode.

Default: off

8.4 dnstap – Dnstap traffic logging

A module for query and response logging based on the dnstap library. You can capture either all or zone-specific
queries and responses; usually you want to do the former.

8.4.1 Example

The configuration comprises only a sink path parameter, which can be either a file, a UNIX socket, or a TCP
address:

mod-dnstap:
- id: capture_all
sink: /tmp/capture.tap

template:
- id: default
global-module: mod-dnstap/capture_all

Note: To be able to use a Unix socket you need an external program to create it. Knot DNS connects to it as a
client using the libfstrm library. It operates exactly like syslog.

8.4. dnstap – Dnstap traffic logging 103

https://dnstap.info/

Knot DNS Documentation, Release 3.4.0

Note: Dnstap log files can also be created or read using kdig.

8.4.2 Module reference

For all queries logging, use this module in the default template. For zone-specific logging, use this module in the
proper zone configuration.

mod-dnstap:
- id: STR
sink: STR
identity: STR
version: STR
log-queries: BOOL
log-responses: BOOL
responses-with-queries: BOOL

id

A module identifier.

sink

A sink path, which can be either a file, a UNIX socket when prefixed with unix:, or a TCP address@port when
prefixed with tcp:. The file may be specified as an absolute path or a path relative to the knotd startup directory.

Required

Warning: File is overwritten on server startup or reload.

identity

A DNS server identity. Set empty value to disable.

Default: FQDN hostname

version

A DNS server version. Set empty value to disable.

Default: server version

log-queries

If enabled, query messages will be logged.

Default: on

8.4. dnstap – Dnstap traffic logging 104

Knot DNS Documentation, Release 3.4.0

log-responses

If enabled, response messages will be logged.

Default: on

responses-with-queries

If enabled, dnstap AUTH_RESPONSE messages will also include the original query message as well as the response
message sent by the server.

Default: off

8.5 geoip— Geography-based responses

This module offers response tailoring based on client's subnet, geographic location, or a statistical weight. It
supports GeoIP databases in the MaxMind DB format, such as GeoIP2 or the free version GeoLite2.

The module can be enabled only per zone.

Note: If EDNS Client Subnet support is enabled and if a query contains this option, the module takes advantage
of this information to provide a more accurate response.

8.5.1 DNSSEC support

There are several ways to enable DNSSEC signing of tailored responses.

Full zone signing

If automatic DNSSEC signing is enabled, the whole zone is signed by the server and all alternative RRsets, which
are responded by the module, are pre-signed when the module is loaded.

This has a speed benefit, however note that every RRset configured in the module should have a default RRset
of the same type contained in the zone, so that the NSEC(3) chain can be built correctly. Also, it is STRONGLY
RECOMMENDED to use manual key management in this setting, as the corresponding zone has to be reloaded
when the signing key changes and to have better control over key synchronization to all instances of the server.

Note: DNSSEC keys for computing record signatures MUST exist in the KASP database or be generated before
the module is launched, otherwise the module fails to compute the signatures and does not load.

Module signing

If automatic DNSSEC signing is disabled, it's possible to combine externally pre-signed zone with module pre-
signing of the alternative RRsets when the module is loaded. In this mode, only ZSK has to be present in the KASP
database. Also in this mode every RRset configured in the module should have a default RRset of the same type
contained in the zone.

Example:

8.5. geoip— Geography-based responses 105

https://dev.maxmind.com/geoip/geoip2/downloadable/
https://dev.maxmind.com/geoip/geoip2/geolite2/

Knot DNS Documentation, Release 3.4.0

policy:
- id: presigned_zone
manual: on
unsafe-operation: no-check-keyset

mod-geoip:
- id: geo_dnssec
...
dnssec: on
policy: presigned_zone

zone:
- domain: example.com.
module: mod-geoip/geo_dnssec

Online signing

Alternatively, the geoip module may be combined with the onlinesign module and the tailored responses can be
signed on the fly. This approach is much more computationally demanding for the server.

Note: If the GeoIP module is used with online signing, it is recommended to set the nsec-bitmap option of the
onlinesign module to contain all Resource Record types potentially generated by the module.

8.5.2 Example

An example configuration:

mod-geoip:
- id: default
config-file: /path/to/geo.conf
ttl: 20
mode: geodb
geodb-file: /path/to/GeoLite2-City.mmdb
geodb-key: [country/iso_code, city/names/en]

zone:
- domain: example.com.
module: mod-geoip/default

8.5.3 Configuration file

Every instance of the module requires an additional config-file in which the desired responses to queries from
various locations are configured. This file has the following simple format:

domain-name1:
- geo|net|weight: value1
RR-Type1: RDATA
RR-Type2: RDATA
...

- geo|net|weight: value2
RR-Type1: RDATA

...
(continues on next page)

8.5. geoip— Geography-based responses 106

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

domain-name2:
...

8.5.4 Module configuration examples

This section contains some examples for the module's config-file.

Using subnets

foo.example.com:
- net: 10.0.0.0/24
A: [192.168.1.1, 192.168.1.2]
AAAA: [2001:DB8::1, 2001:DB8::2]
TXT: "subnet\ 10.0.0.0/24"

...
bar.example.com:
- net: 2001:DB8::/32
A: 192.168.1.3
AAAA: 2001:DB8::3
TXT: "subnet\ 2001:DB8::/32"

...

Clients from the specified subnets will receive the responses defined in the module config. Others will receive the
default records defined in the zone (if any).

Note: If a space or a quotation mark is a part of record data, such a character must be prefixed with a backslash.
The following notations are equivalent:

Multi-word\ string
"Multi-word\ string"
"\"Multi-word string\""

Using geographic locations

foo.example.com:
- geo: "CZ;Prague"
CNAME: cz.foo.example.com.

- geo: "US;Las Vegas"
CNAME: vegas.foo.example.net.

- geo: "US;*"
CNAME: us.foo.example.net.

...

Clients from the specified geographic locations will receive the responses defined in the module config. Others
will receive the default records defined in the zone (if any). See geodb-key for the syntax and semantics of the
location definitions.

8.5. geoip— Geography-based responses 107

Knot DNS Documentation, Release 3.4.0

Using weighted records

foo.example.com:
- weight: 1
CNAME: canary.foo.example.com.

- weight: 10
CNAME: prod1.foo.example.com.

- weight: 10
CNAME: prod2.foo.example.com.

...

Each response is generated through a random pick where each defined record has a likelihood of its weight over
the sum of all weights for the requested name to. Records defined in the zone itself (if any) will never be served.

Result:

$ for i in $(seq 1 100); do kdig @192.168.1.242 CNAME foo.example.com +short; done |␣
→˓sort | uniq -c

3 canary.foo.example.com.foo.example.com.
52 prod1.foo.example.net.foo.example.com.
45 prod2.foo.example.net.foo.example.com.

8.5.5 Module reference

mod-geoip:
- id: STR
config-file: STR
ttl: TIME
mode: geodb | subnet | weighted
dnssec: BOOL
policy: policy_id
geodb-file: STR
geodb-key: STR ...

id

A module identifier.

config-file

A path to the response configuration file as described above. A non-absolute path is relative to the knotd startup
directory.

Required

8.5. geoip— Geography-based responses 108

Knot DNS Documentation, Release 3.4.0

ttl

The time to live of Resource Records returned by the module, in seconds.

Default: 60

mode

The mode of operation of the module.

Possible values:

• subnet – Responses are tailored according to subnets.

• geodb – Responses are tailored according to geographic data retrieved from the configured database.

• weighted – Responses are tailored according to a statistical weight.

Default: subnet

dnssec

If explicitly enabled, the module signs positive responses based on the module policy (policy). If explicitly disabled,
positive responses from the module are not signed even if the zone is pre-signed or signed by the server (dnssec-
signing).

Warning: This configuration must be used carefully. Otherwise the zone responses can be bogus. DNSKEY
rotation isn't supported. So manual mode is highly recommended.

Default: current value of dnssec-signing with dnssec-policy

policy

A reference to DNSSEC signing policy which is used if dnssec is enabled.

Default: an imaginary policy with all default values

geodb-file

A path to a .mmdb file containing the GeoIP database. A non-absolute path is relative to the knotd startup directory.

Required if mode is set to geodb

geodb-key

Multi-valued item, can be specified up to 8 times. Each geodb-key specifies a path to a key in a node in the supplied
GeoIP database. The module currently supports two types of values: string or 32-bit unsigned int. In the latter
case, the key has to be prefixed with (id). Common choices of keys include:

• continent/code
• country/iso_code
• (id)country/geoname_id
• city/names/en
• (id)city/geoname_id
• isp

8.5. geoip— Geography-based responses 109

Knot DNS Documentation, Release 3.4.0

• ...

The exact keys available depend on the database being used. To get the full list of keys available, you can e.g. do
a sample lookup on your database with the mmdblookup tool.

In the zone's config file for the module the values of the keys are entered in the same order as the keys in the
module's configuration, separated by a semicolon. Enter the value "*" if the key is allowed to have any value.

8.6 noudp— No UDP response

The module sends empty truncated reply to a query over UDP. Replies over TCP are not affected.

8.6.1 Example

To enable this module for all configured zones and every UDP reply:

template:
- id: default
global-module: mod-noudp

Or with specified UDP allow rate:

mod-noudp:
- id: sometimes
udp-allow-rate: 1000 # Don't truncate every 1000th UDP reply

template:
- id: default
module: mod-noudp/sometimes

8.6.2 Module reference

mod-noudp:
- id: STR
udp-allow-rate: INT
udp-truncate-rate: INT

Note: Both udp-allow-rate and udp-truncate-rate cannot be specified together.

udp-allow-rate

Specifies frequency of UDP replies that are not truncated. A non-zero value means that every Nth UDP reply is not
truncated.

Note: The rate value is associated with one UDP worker. If more UDP workers are configured, the specified value
may not be obvious to clients.

Default: not set

8.6. noudp— No UDP response 110

https://maxmind.github.io/libmaxminddb/mmdblookup.html

Knot DNS Documentation, Release 3.4.0

udp-truncate-rate

Specifies frequency of UDP replies that are truncated (opposite of udp-allow-rate). A non-zero value means that
every Nth UDP reply is truncated.

Note: The rate value is associated with one UDP worker. If more UDP workers are configured, the specified value
may not be obvious to clients.

Default: 1

8.7 onlinesign— Online DNSSEC signing

The module provides online DNSSEC signing. Instead of pre-computing the zone signatures when the zone is
loaded into the server or instead of loading an externally signed zone, the signatures are computed on-the-fly
during answering.

The main purpose of the module is to enable authenticated responses with zones which use other dynamic module
(e.g., automatic reverse record synthesis) because these zones cannot be pre-signed. However, it can be also used
as a simple signing solution for zones with low traffic and also as a protection against zone content enumeration
(zone walking).

In order to minimize the number of computed signatures per query, the module produces a bit different responses
from the responses that would be sent if the zone was pre-signed. Still, the responses should be perfectly valid for
a DNSSEC validating resolver.

Differences from statically signed zones:

• The NSEC records are constructed as Minimally Covering NSEC Records (RFC 7129#appendix-A). There-
fore the generated domain names cover the complete domain name space in the zone's authority.

• NXDOMAIN responses are promoted to NODATA responses. The module proves that the query type does
not exist rather than that the domain name does not exist.

• Domain names matching a wildcard are expanded. The module pretends and proves that the domain name
exists rather than proving a presence of the wildcard.

Records synthesized by the module:

• DNSKEY record is synthesized in the zone apex and includes public key material for the active signing key.

• NSEC records are synthesized as needed.

• RRSIG records are synthesized for authoritative content of the zone.

• CDNSKEY and CDS records are generated as usual to publish valid Secure Entry Point.

Limitations:

• Due to limited interaction between the server and the module, after any change to KASP DB (including
knotc zone-ksk-submitted command) or when a scheduled DNSSEC event shall be processed (e.g. transition
to next DNSKEY rollover state) the server must be reloaded or queried to the zone (with the DO bit set) to
apply the change or to trigger the event. For optimal operation, the recommended query frequency is at least
ones per second for each zone configured.

8.7. onlinesign— Online DNSSEC signing 111

https://datatracker.ietf.org/doc/html/rfc7129.html#appendix-A

Knot DNS Documentation, Release 3.4.0

• The NSEC records may differ for one domain name if queried for different types. This is an implementation
shortcoming as the dynamic modules cooperate loosely. Possible synthesis of a type by other module can-
not be predicted. This dissimilarity should not affect response validation, even with validators performing
aggressive negative caching (RFC 8198).

• The module isn't compatible with the Offline KSK mode yet.

Recommendations:

• Configure the module with an explicit signing policy which has the rrsig-lifetime value in the order of hours.

• Note that single-type-signing should be set explicitly to avoid fallback to backward-compatible default.

8.7.1 Example

• Enable the module in the zone configuration with the default signing policy:

zone:
- domain: example.com
module: mod-onlinesign

Or with an explicit signing policy:

policy:
- id: rsa
algorithm: RSASHA256
ksk-size: 2048
rrsig-lifetime: 25h
rrsig-refresh: 20h

mod-onlinesign:
- id: explicit
policy: rsa

zone:
- domain: example.com
module: mod-onlinesign/explicit

Or use manual policy in an analogous manner, see Manual key management.

• Make sure the zone is not signed and also that the automatic signing is disabled. All is set, you are good to
go. Reload (or start) the server:

$ knotc reload

The following example stacks the online signing with reverse record synthesis module:

mod-synthrecord:
- id: lan-forward
type: forward
prefix: ip-
ttl: 1200
network: 192.168.100.0/24

zone:
- domain: corp.example.net
module: [mod-synthrecord/lan-forward, mod-onlinesign]

8.7. onlinesign— Online DNSSEC signing 112

https://datatracker.ietf.org/doc/html/rfc8198.html

Knot DNS Documentation, Release 3.4.0

8.7.2 Module reference

mod-onlinesign:
- id: STR
policy: policy_id
nsec-bitmap: STR ...

id

A module identifier.

policy

A reference to DNSSEC signing policy. A special default value can be used for the default policy setting.

Default: an imaginary policy with all default values

nsec-bitmap

A list of Resource Record types included in an NSEC bitmap generated by the module. This option should reflect
zone contents or synthesized responses by modules, such as synthrecord and GeoIP.

Default: [A, AAAA]

8.8 probe— DNS traffic probe

The module allows the server to send simplified information about regular DNS traffic through UNIX sockets. The
exported information consists of data blocks where each data block (datagram) describes one query/response pair.
The response part can be empty. The receiver can be an arbitrary program using libknot interface (C or Python).
In case of high traffic, more channels (sockets) can be configured to allow parallel processing.

Note: A simple probe client in Python.

8.8.1 Example

Default module configuration:

template:
- id: default
global-module: mod-probe

Per zone probe with 8 channels and maximum 1M logs per second limit:

mod-probe:
- id: custom
path: /tmp/knot-probe
channels: 8
max-rate: 1000000

zone:
- domain: example.com.
module: mod-probe/custom

8.8. probe— DNS traffic probe 113

https://gitlab.nic.cz/knot/knot-dns/-/blob/master/scripts/probe_dump.py

Knot DNS Documentation, Release 3.4.0

8.8.2 Module reference

mod-probe:
- id: STR
path: STR
channels: INT
max-rate: INT

id

A module identifier.

path

A directory path where the UNIX sockets are located. A non-absolute path is relative to the knotd startup directory.

Note: It's recommended to use a directory with the execute permission restricted to the intended probe consumer
process owner only.

Default: rundir

channels

Number of channels (UNIX sockets) the traffic is distributed to. In case of high DNS traffic which is beeing
processed by many UDP/XDP/TCP workers, using more channels reduces the module overhead.

Default: 1

max-rate

Maximum number of queries/replies per second the probe is allowed to transfer. If the limit is exceeded, the
over-limit traffic is ignored. Zero value means no limit.

Default: 100000 (one hundred thousand)

8.9 queryacl— Limit queries by remote address or target interface

This module provides a simple way to whitelist incoming queries according to the query's source address or target
interface. It can be used e.g. to create a restricted-access subzone with delegations from the corresponding public
zone. The module may be enabled both globally and per-zone.

Note: The module limits only regular queries. Notify, transfer and update are handled by ACL.

8.9. queryacl— Limit queries by remote address or target interface 114

Knot DNS Documentation, Release 3.4.0

8.9.1 Example

mod-queryacl:
- id: default
address: [192.0.2.73-192.0.2.90, 203.0.113.0/24]
interface: 198.51.100

zone:
- domain: example.com
module: mod-queryacl/default

8.9.2 Module reference

mod-queryacl:
- id: STR
address: ADDR[/INT] | ADDR-ADDR | STR ...
interface: ADDR[/INT] | ADDR-ADDR | STR ...

id

A module identifier.

address

An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. If the query's
address does not fall into any of the configured ranges, NOTAUTH rcode is returned.

Default: not set

interface

An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. If the interface
does not fall into any of the configured ranges, NOTAUTH rcode is returned. Note that every interface used has to
be configured in listen.

Note: Don't use values 0.0.0.0 and ::0. These values are redundant and don't work as expected.

Default: not set

8.10 rrl— Response rate limiting

Response rate limiting (RRL) is a method to combat DNS reflection amplification attacks. These attacks rely on
the fact that the source address of a UDP query can be forged, and without a worldwide deployment of BCP38,
such a forgery cannot be prevented. An attacker can use a DNS server (or multiple servers) as an amplification
source to flood a victim with a large number of unsolicited DNS responses. RRL lowers the amplification factor
of these attacks by sending some responses as truncated or by dropping them altogether.

This module can also help protect the server from excessive utilization by limiting incoming packets (including
handshakes) based on consumed time. If a packet is time rate limited, it's dropped. This function works with all
supported non-UDP transport protocols and cannot be configured per zone.

Note: This module introduces three statistics counters:

8.10. rrl— Response rate limiting 115

https://tools.ietf.org/html/bcp38

Knot DNS Documentation, Release 3.4.0

• slipped – The number of slipped UDP responses.

• dropped – The number of dropped UDP responses due to the rate limit.

• dropped-time – The number of dropped non-UDP packets due to the time rate limit.

Note: If the Cookies module is active, RRL is not applied to UDP responses with a valid DNS cookie.

8.10.1 Example

You can enable RRL by setting the module globally

template:
- id: default
global-module: mod-rrl # Default module configuration

or per zone

mod-rrl:
- id: custom
rate-limit: 200

zone:
- domain: example.com
module: mod-rrl/custom # Custom module configuration

8.10.2 Module reference

mod-rrl:
- id: STR
rate-limit: INT
instant-limit: INT
slip: INT
time-rate-limit: INT
time-instant-limit: INT
table-size: INT
whitelist: ADDR[/INT] | ADDR-ADDR | STR ...
log-period: INT
dry-run: BOOL

id

A module identifier.

8.10. rrl— Response rate limiting 116

Knot DNS Documentation, Release 3.4.0

rate-limit

Maximal allowed number of UDP queries per second from a single IPv6 or IPv4 address.

Rate limiting is performed for the whole address and several chosen prefixes. The limits of prefixes are constant
multiples of rate-limit.

The specific prefixes and multipliers, which might be adjusted in the future, are for IPv6 /128: 1, /64: 2, /56: 3,
/48: 4, /32: 64; for IPv4 /32: 1, /24: 32, /20: 256, /18: 768.

With each host/network, a counter of unrestricted responses is associated; if the counter would exceed its capacity,
it is not incremented and the response is restricted. Counters use exponential decay for lowering their values, i.e.
they are lowered by a constant fraction of their value each millisecond. The specified rate limit is reached, when
the number of queries is the same every millisecond; sending many queries once a second or even a larger timespan
leads to a more strict limiting.

Default: 20

instant-limit

Maximal allowed number of queries at a single point in time from a single IPv6 or IPv4 address. The limits for
prefixes use the same multipliers as for rate-limit.

This limit is reached when many queries come from a new host/network, or after a longer time of inactivity.

The instant-limit sets the actual capacity of each counter of responses, and together with the rate-limit they set the
fraction by which the counter is periodically lowered. The instant-limit may be at least rate-limit / 1000, at which
point the counters are zeroed each millisecond.

Default: 50

slip

As attacks using DNS/UDP are usually based on a forged source address, an attacker could deny services to the
victim's netblock if all responses would be completely blocked. The idea behind SLIP mechanism is to send each
Nth response as truncated, thus allowing client to reconnect via TCP for at least some degree of service. It is worth
noting, that some responses can't be truncated (e.g. SERVFAIL).

• Setting the value to 0 will cause that all rate-limited responses will be dropped. The outbound bandwidth
and packet rate will be strictly capped by the rate-limit option. All legitimate requestors affected by the limit
will face denial of service and will observe excessive timeouts. Therefore this setting is not recommended.

• Setting the value to 1 will cause that all rate-limited responses will be sent as truncated. The amplification
factor of the attack will be reduced, but the outbound data bandwidth won't be lower than the incoming
bandwidth. Also the outbound packet rate will be the same as without RRL.

• Setting the value to 2 will cause that approximately half of the rate-limited responses will be dropped, the
other half will be sent as truncated. With this configuration, both outbound bandwidth and packet rate will
be lower than the inbound. On the other hand, the dropped responses enlarge the time window for possible
cache poisoning attack on the resolver.

• Setting the value to anything larger than 2 will keep on decreasing the outgoing rate-limited bandwidth,
packet rate, and chances to notify legitimate requestors to reconnect using TCP. These attributes are inversely
proportional to the configured value. Setting the value high is not advisable.

Default: 1

8.10. rrl— Response rate limiting 117

Knot DNS Documentation, Release 3.4.0

time-rate-limit

This limit works similarly to rate-limit but considers the time consumed (in microseconds) by the remote over
non-UDP transport protocols.

Default: 4000 (microseconds)

time-instant-limit

This limit works similarly to instant-limit but considers the time consumed (in microseconds) by the remote over
non-UDP transport protocols.

Default: 5000 (microseconds)

table-size

Maximal number of stored hosts/networks with their counters. The data structure tries to store only the most
frequent sources, so it is safe to set it according to the expected maximal number of limited ones.

Use 1.4 * maximum_qps / rate-limit, where maximum_qps is the number of queries which can be handled by the
server per second. There is at most maximum_qps / rate-limit limited hosts; larger networks have higher limits and
so require only a fraction of the value (handled by the 1.4 multiplier). The value will be rounded up to the nearest
power of two.

The same table size is used for both counting-based and time-based limiting; the maximum number of time-limited
hosts is expected to be lower, so it's not typically needed to be considered. There is at most 1 000 000 * #cpus /
time-rate-limit of them.

The memory occupied by one table structure is 8 * table-size B.

Default: 524288

whitelist

An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges to exempt from
rate limiting. Empty list means that no incoming connection will be white-listed.

Default: not set

log-period

Minimal time in milliseconds between two log messages, or zero to disable logging.

If a response is limited, the address and the prefix on which it was blocked is logged and logging is disabled for the
log-period milliseconds. As long as limiting is needed, one source is logged each period and sources with more
blocked queries have greater probability to be chosen.

The approach is used by counting-based and time-based limiting separately, so you can expect one message per
log-period from each of them.

Default: 0 (disabled)

8.10. rrl— Response rate limiting 118

Knot DNS Documentation, Release 3.4.0

dry-run

If enabled, the module doesn't alter any response. Only query classification is performed with possible statistics
counter incrementation.

Default: off

8.11 stats— Query statistics

The module extends server statistics with incoming DNS request and corresponding response counters, such as used
network protocol, total number of responded bytes, etc (see module reference for full list of supported counters).
This module should be configured as the last module.

Note: Server initiated communication (outgoing NOTIFY, incoming *XFR,...) is not counted by this module.

Note: Leading 16-bit message size over TCP is not considered.

8.11.1 Example

Common statistics with default module configuration:

template:
- id: default
global-module: mod-stats

Per zone statistics with explicit module configuration:

mod-stats:
- id: custom
edns-presence: on
query-type: on

template:
- id: default
module: mod-stats/custom

8.11.2 Module reference

mod-stats:
- id: STR
request-protocol: BOOL
server-operation: BOOL
request-bytes: BOOL
response-bytes: BOOL
edns-presence: BOOL
flag-presence: BOOL
response-code: BOOL
request-edns-option: BOOL
response-edns-option: BOOL
reply-nodata: BOOL
query-type: BOOL

(continues on next page)

8.11. stats— Query statistics 119

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

query-size: BOOL
reply-size: BOOL

id

A module identifier.

request-protocol

If enabled, all incoming requests are counted by the network protocol:

• udp4 - UDP over IPv4

• tcp4 - TCP over IPv4

• quic4 - QUIC over IPv4

• tls4 - TLS over IPv4

• udp6 - UDP over IPv6

• tcp6 - TCP over IPv6

• quic6 - QUIC over IPv6

• tls6 - TLS over IPv6

• udp4-xdp - UDP over IPv4 through XDP

• tcp4-xdp - TCP over IPv4 through XDP

• quic4-xdp - QUIC over IPv4 through XDP

• udp6-xdp - UDP over IPv6 through XDP

• tcp6-xdp - TCP over IPv6 through XDP

• quic6-xdp - QUIC over IPv6 through XDP

Default: on

server-operation

If enabled, all incoming requests are counted by the server operation. The server operation is based on message
header OpCode and message query (meta) type:

• query - Normal query operation

• update - Dynamic update operation

• notify - NOTIFY request operation

• axfr - Full zone transfer operation

• ixfr - Incremental zone transfer operation

• invalid - Invalid server operation

Default: on

8.11. stats— Query statistics 120

Knot DNS Documentation, Release 3.4.0

request-bytes

If enabled, all incoming request bytes are counted by the server operation:

• query - Normal query bytes

• update - Dynamic update bytes

• other - Other request bytes

Default: on

response-bytes

If enabled, outgoing response bytes are counted by the server operation:

• reply - Normal response bytes

• transfer - Zone transfer bytes

• other - Other response bytes

Warning: Dynamic update response bytes are not counted by this module.

Default: on

edns-presence

If enabled, EDNS pseudo section presence is counted by the message direction:

• request - EDNS present in request

• response - EDNS present in response

Default: off

flag-presence

If enabled, some message header flags are counted:

• TC - Truncated Answer in response

• DO - DNSSEC OK in request

Default: off

response-code

If enabled, outgoing response code is counted:

• NOERROR

• ...

• NOTZONE

• BADVERS

• ...

• BADCOOKIE

• other - All other codes

8.11. stats— Query statistics 121

Knot DNS Documentation, Release 3.4.0

Note: In the case of multi-message zone transfer response, just one counter is incremented.

Warning: Dynamic update response code is not counted by this module.

Default: on

request-edns-option

If enabled, EDNS options in requests are counted by their code:

• CODE0

• ...

• EDNS-KEY-TAG (CODE14)

• other - All other codes

Default: off

response-edns-option

If enabled, EDNS options in responses are counted by their code. See request-edns-option.

Default: off

reply-nodata

If enabled, NODATA pseudo RCODE (RFC 2308#section-2.2) is counted by the query type:

• A

• AAAA

• other - All other types

Default: off

query-type

If enabled, normal query type is counted:

• A (TYPE1)

• ...

• TYPE65

• SPF (TYPE99)

• ...

• TYPE110

• ANY (TYPE255)

• ...

• TYPE260

• other - All other types

8.11. stats— Query statistics 122

https://datatracker.ietf.org/doc/html/rfc2308.html#section-2.2

Knot DNS Documentation, Release 3.4.0

Note: Not all assigned meta types (IXFR, AXFR,...) have their own counters, because such types are not processed
as normal query.

Default: off

query-size

If enabled, normal query message size distribution is counted by the size range in bytes:

• 0-15

• 16-31

• ...

• 272-287

• 288-65535

Default: off

reply-size

If enabled, normal reply message size distribution is counted by the size range in bytes:

• 0-15

• 16-31

• ...

• 4080-4095

• 4096-65535

Default: off

8.12 synthrecord – Automatic forward/reverse records

This module is able to synthesize either forward or reverse records for a given prefix and subnet.

Records are synthesized only if the query can't be satisfied from the zone. Both IPv4 and IPv6 are supported.

8.12.1 Example

Automatic forward records

mod-synthrecord:
- id: test1
type: forward
prefix: dynamic-
ttl: 400
network: 2620:0:b61::/52

zone:
- domain: test.
file: test.zone # Must exist
module: mod-synthrecord/test1

8.12. synthrecord – Automatic forward/reverse records 123

Knot DNS Documentation, Release 3.4.0

Result:

$ kdig AAAA dynamic-2620-0-b61-100--1.test.
...
;; QUESTION SECTION:
;; dynamic-2620-0-b61-100--1.test. IN AAAA

;; ANSWER SECTION:
dynamic-2620-0-b61-100--1.test. 400 IN AAAA 2620:0:b61:100::1

You can also have CNAME aliases to the dynamic records, which are going to be further resolved:

$ kdig AAAA alias.test.
...
;; QUESTION SECTION:
;; alias.test. IN AAAA

;; ANSWER SECTION:
alias.test. 3600 IN CNAME dynamic-2620-0-b61-100--2.test.
dynamic-2620-0-b61-100--2.test. 400 IN AAAA 2620:0:b61:100::2

Automatic reverse records

mod-synthrecord:
- id: test2
type: reverse
prefix: dynamic-
origin: test
ttl: 400
network: 2620:0:b61::/52

zone:
- domain: 1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa.
file: 1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa.zone # Must exist
module: mod-synthrecord/test2

Result:

$ kdig -x 2620:0:b61::1
...
;; QUESTION SECTION:
;; 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa. IN PTR

;; ANSWER SECTION:
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa. 400 IN PTR␣
→˓dynamic-2620-0-b61--1.test.

8.12. synthrecord – Automatic forward/reverse records 124

Knot DNS Documentation, Release 3.4.0

8.12.2 Module reference

mod-synthrecord:
- id: STR
type: forward | reverse
prefix: STR
origin: DNAME
ttl: INT
network: ADDR[/INT] | ADDR-ADDR ...
reverse-short: BOOL

id

A module identifier.

type

The type of generated records.

Possible values:

• forward – Forward records

• reverse – Reverse records

Required

prefix

A record owner prefix.

Note: The value doesn’t allow dots, address parts in the synthetic names are separated with a dash.

Default: empty

origin

A zone origin (only valid for the reverse type).

Required

ttl

Time to live of the generated records.

Default: 3600

8.12. synthrecord – Automatic forward/reverse records 125

Knot DNS Documentation, Release 3.4.0

network

An ordered list of IP addresses, network subnets or network ranges the query must match.

Required

reverse-short

If enabled, a shortened IPv6 address can be used for reverse record rdata synthesis.

Default: on

8.13 whoami— Whoami response

The module synthesizes an A or AAAA record containing the query source IP address, at the apex of the zone
being served. It makes sure to allow Knot DNS to generate cacheable negative responses, and to allow fallback to
extra records defined in the underlying zone file. The TTL of the synthesized record is copied from the TTL of the
SOA record in the zone file.

Because a DNS query for type A or AAAA has nothing to do with whether the query occurs over IPv4 or IPv6,
this module requires a special zone configuration to support both address families. For A queries, the underlying
zone must have a set of nameservers that only have IPv4 addresses, and for AAAA queries, the underlying zone
must have a set of nameservers that only have IPv6 addresses.

8.13.1 Example

To enable this module, you need to add something like the following to the Knot DNS configuration file:

zone:
- domain: whoami.domain.example
file: "/path/to/whoami.domain.example"
module: mod-whoami

zone:
- domain: whoami6.domain.example
file: "/path/to/whoami6.domain.example"
module: mod-whoami

The whoami.domain.example zone file example:

$TTL 1

@ SOA (
whoami.domain.example. ; MNAME
hostmaster.domain.example. ; RNAME
2016051300 ; SERIAL
86400 ; REFRESH
86400 ; RETRY
86400 ; EXPIRE
1 ; MINIMUM

)

$TTL 86400

@ NS ns1.whoami.domain.example.
@ NS ns2.whoami.domain.example.

(continues on next page)

8.13. whoami— Whoami response 126

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

@ NS ns3.whoami.domain.example.
@ NS ns4.whoami.domain.example.

ns1 A 198.51.100.53
ns2 A 192.0.2.53
ns3 A 203.0.113.53
ns4 A 198.19.123.53

The whoami6.domain.example zone file example:

$TTL 1

@ SOA (
whoami6.domain.example. ; MNAME
hostmaster.domain.example. ; RNAME
2016051300 ; SERIAL
86400 ; REFRESH
86400 ; RETRY
86400 ; EXPIRE
1 ; MINIMUM

)

$TTL 86400

@ NS ns1.whoami6.domain.example.
@ NS ns2.whoami6.domain.example.
@ NS ns3.whoami6.domain.example.
@ NS ns4.whoami6.domain.example.

ns1 AAAA 2001:db8:100::53
ns2 AAAA 2001:db8:200::53
ns3 AAAA 2001:db8:300::53
ns4 AAAA 2001:db8:400::53

The parent domain would then delegate whoami.domain.example to ns[1-4].whoami.domain.example and
whoami6.domain.example to ns[1-4].whoami6.domain.example, and include the corresponding A-only or AAAA-
only glue records.

Note: This module is not configurable.

8.13. whoami— Whoami response 127

CHAPTER

NINE

UTILITIES

Knot DNS comes with a few DNS client utilities and a few utilities to control the server. This section collects
manual pages for all provided binaries:

9.1 knotd – Knot DNS server daemon

9.1.1 Synopsis

knotd [config_option] [options]

9.1.2 Description

Knot DNS is a high-performance authoritative DNS server. The knotd program is the DNS server daemon.

Config options

-c, --config file
Use a textual configuration file (default is @config_dir@/knot.conf).

-C, --confdb directory
Use a binary configuration database directory (default is @storage_dir@/confdb). The default configura-
tion database, if exists, has a preference to the default configuration file.

Options

-m, --max-conf-size MiB
Set maximum size of the configuration database (default is @conf_mapsize@ MiB, maximum 10000 MiB).

-s, --socket path
Use a remote control UNIX socket path (default is @run_dir@/knot.sock).

-d, --daemonize [directory]
Run the server as a daemon. New root directory may be specified (default is /).

-v, --verbose
Enable debug output.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

128

Knot DNS Documentation, Release 3.4.0

Signals

If the knotd process receives a SIGHUP signal, it reloads its configuration and reopens the log files, if they are
configured. When knotd receives a SIGUSR1 signal, it reloads all configured zones. Upon receiving a SIGINT
signal, knotd exits.

9.1.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.1.4 See Also

knot.conf(5), knotc(8), keymgr(8), kjournalprint(8).

9.2 knotc – Knot DNS control utility

9.2.1 Synopsis

knotc [config_option] [options] [action]

9.2.2 Description

This program controls a running knotd process using a socket.

If an action is specified, it is performed and knotc exits, otherwise the program is executed in the interactive mode.

Config options

-c, --config file
Use a textual configuration file (default is @config_dir@/knot.conf).

-C, --confdb directory
Use a binary configuration database directory (default is @storage_dir@/confdb). The default configura-
tion database, if exists, has a preference to the default configuration file.

Options

-m, --max-conf-size MiB
Set maximum size of the configuration database (default is @conf_mapsize@ MiB, maximum 10000 MiB).

-s, --socket path
Use a control UNIX socket path (default is @run_dir@/knot.sock).

-t, --timeout seconds
Use a control timeout in seconds. Set to 0 for infinity (default is 60). The control socket operations are also
subject to the timeout parameter set on the server side in server's Control configuration section.

-b, --blocking
Zone event trigger commands wait until the event is finished. Control timeout is set to infinity if not forced
by explicit timeout specification.

-e, --extended
Show extended output (even empty items in zone status).

-f, --force
Forced operation. Overrides some checks.

9.2. knotc – Knot DNS control utility 129

Knot DNS Documentation, Release 3.4.0

-x, --mono
Don't generate colorized output.

-X, --color
Force colorized output in extended output or to a pipe.

-v, --verbose
Enable debug output.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

Actions

status [detail]
Check if the server is running. Details are version for the running server version, workers for the numbers
of worker threads, configure for the configure summary, or cert-key for the public key pin of the currently
used certificate.

stop
Stop the server if running.

reload
Reload the server configuration and modified zone files, and reopen the log files if they are configured. All
open zone transactions will be aborted!

stats [module[.counter]]
Show global statistics counter(s). To print also counters with value 0, use force option.

zone-check [zone...]
Test if the server can load the zone. Semantic checks are executed if enabled in the configuration. If invoked
with the force option, an error is returned when semantic check warning appears. (*)

zone-status [zone...] [filter]
Show the zone status. Filters are +role, +serial, +transaction, +events, +freeze, and +catalog. Empty zone
parameters are omitted, unless the --extended option is used. A single dash in the output represents an unset
value. Automatic colorization can be overruled using the --mono and --color options.

The color code is: green - zone acts as a master / red - zone acts as a slave, bold font (highlited) - zone is
active / normal - zone is empty, underscored - zone is an interpreted catalog member.

zone-reload [zone...]
Trigger a zone reload from a disk without checking its modification time. For secondary zone, the refresh
event from primary server(s) is scheduled; for primary zone, the notify event to secondary server(s) is sched-
uled. An open zone transaction will be aborted! If invoked with the force option, also zone modules will be
re-loaded, but blocking mode might not work reliably. (#)

zone-refresh [zone...]
Trigger a check for the zone serial on the zone's primary server. If the primary server has a newer zone, a
transfer is scheduled. This command is valid for secondary zones. (#)

zone-retransfer [zone...]
Trigger a zone transfer from the zone's primary server. The server doesn't check the serial of the primary
server's zone. This command is valid for secondary zones. (#)

zone-notify [zone...]
Trigger a NOTIFY message to all configured remotes. This can help in cases when previous NOTIFY had
been lost or the secondary servers have been offline. (#)

zone-flush [zone...] [+outdir directory]
Trigger a zone journal flush to the configured zone file. If an output directory is specified, the current zone is

9.2. knotc – Knot DNS control utility 130

Knot DNS Documentation, Release 3.4.0

immediately dumped (in the blocking mode) to a zone file in the specified directory. See Notes below about
the directory permissions. (#)

zone-backup [zone...] +backupdir directory [filter...]
Trigger a zone data and metadata backup to a specified directory. Available filters are +zonefile, +journal,
+timers, +kaspdb, +keysonly, +catalog, +quic, and their negative counterparts +nozonefile, +nojour-
nal, +notimers, +nokaspdb, +nokeysonly, +nocatalog, and +noquic. With these filters set, zone contents,
zone's journal, zone-related timers, zone-related data in the KASP database together with keys (or keys with-
out the KASP database), zone's catalog, and the server QUIC key and certificate, respectively, are backed up,
or omitted from the backup. By default, filters +zonefile, +timers, +kaspdb, +catalog, +quic, +nojournal,
and +nokeysonly are set for backup. The same defaults are set for restore, with the only difference being
+noquic. Setting a filter for an item doesn't change the default settings for other items. The only exception
is +keysonly, which disables all other filters by default, but they can still be turned on explicitly. If zone
flushing is disabled, the original zone file is backed up instead of writing out zone contents to a file. When
backing-up a catalog zone, it is recommended to prevent ongoing changes to it by use of zone-freeze. The
force option allows an already existing backupdir to be overwritten. See Notes below about the directory
permissions. (#)

zone-restore [zone...] +backupdir directory [filter...]
Trigger a zone data and metadata restore from a specified backup directory. Optional filters are equivalent to
the same filters of zone-backup. Restore from backups created by Knot DNS releases prior to 3.1 is possible
with the force option. See Notes below about the directory permissions. (#)

zone-sign [zone...]
Trigger a DNSSEC re-sign of the zone. Existing signatures will be dropped. This command is valid for
zones with DNSSEC signing enabled. (#)

zone-validate [zone...]
Trigger a DNSSEC validation of the zone. If the validation fails and the zone is secondary, the zone expires
immediately! (#)

zone-keys-load [zone...]
Trigger a load of DNSSEC keys and other signing material from KASP database (which might have been
altered manually). If suitable, re-sign the zone afterwards (keeping valid signatures intact). (#)

zone-key-rollover zone key_type
Trigger immediate key rollover. Publish new key and start a key rollover, even when the key has a lifetime
to go. Key type can be ksk (also for CSK) or zsk. This command is valid for zones with DNSSEC signing
and automatic key management enabled. Note that complete key rollover consists of several steps and the
blocking mode relates to the initial one only! (#)

zone-ksk-submitted zone...
Use when the zone's KSK rollover is in submission phase. By calling this command the user confirms
manually that the parent zone contains DS record for the new KSK in submission phase and the old KSK
can be retired. (#)

zone-freeze [zone...]
Trigger a zone freeze. All running events will be finished and all new and pending (planned) zone-changing
events (load, refresh, update, flush, and DNSSEC signing) will be held up until the zone is thawed. Up to 8
(this limit is hardcoded) DDNS updates per zone will be queued, subsequent updates will be refused. (#)

zone-thaw [zone...]
Trigger dismissal of zone freeze. (#)

zone-xfr-freeze [zone...]
Temporarily disable outgoing AXFR/IXFR for the zone(s). (#)

zone-xfr-thaw [zone...]
Dismiss outgoing XFR freeze. (#)

zone-read zone [owner [type]]
Get zone data that are currently being presented.

zone-begin zone...
Begin a zone transaction.

9.2. knotc – Knot DNS control utility 131

Knot DNS Documentation, Release 3.4.0

zone-commit zone...
Commit the zone transaction. All changes are applied to the zone.

zone-abort zone...
Abort the zone transaction. All changes are discarded.

zone-diff zone
Get zone changes within the transaction.

zone-get zone [owner [type]]
Get zone data within the transaction.

zone-set zone owner [ttl] type rdata
Add zone record within the transaction. The first record in a rrset requires a ttl value specified.

zone-unset zone owner [type [rdata]]
Remove zone data within the transaction.

zone-purge zone... [+orphan] [filter...]
Purge zone data, zone file, journal, timers, and/or KASP data of specified zones. Available filters are +expire,
+zonefile, +journal, +timers, +kaspdb, and +catalog. If no filter is specified, all filters are enabled. If the
zone is no longer configured, add +orphan parameter (zone file cannot be purged in this case). When
purging orphans, always check the server log for possible errors. For proper operation, it's necessary to
prevent ongoing changes to the zone and triggering of zone related events during purge; use of zone-freeze
is advisable. This command always requires the force option. (#)

zone-stats zone [module[.counter]]
Show zone statistics counter(s). To print also counters with value 0, use force option.

conf-init
Initialize the configuration database. If the database doesn't exist yet, execute this command as an intended
user to ensure the server is permitted to access the database (e.g. sudo -u knot knotc conf-init). (*)

conf-check
Check the server configuration. (*)

conf-import filename [+nopurge]
Import a configuration file into the configuration database. If the database doesn't exist yet, execute this
command as an intended user to ensure the server is permitted to access the database (e.g. sudo -u knot
knotc conf-import ...). An optional filter +nopurge prevents possibly existing configuration database from
purging before the import itself. Also ensure the server is not using the configuration database at the same
time! (*)

conf-export [filename] [+schema]
Export the configuration database (or JSON schema) into a file or stdout. (*)

conf-list [item]
List the configuration database sections or section items.

conf-read [item]
Read the item from the active configuration database.

conf-begin
Begin a writing configuration database transaction. Only one transaction can be opened at a time.

conf-commit
Commit the configuration database transaction.

conf-abort
Rollback the configuration database transaction.

conf-diff [item]
Get the item difference in the transaction.

conf-get [item]
Get the item data from the transaction.

9.2. knotc – Knot DNS control utility 132

Knot DNS Documentation, Release 3.4.0

conf-set item [data...]
Set the item data in the transaction.

conf-unset [item] [data...]
Unset the item data in the transaction.

Notes

Empty or -- zone parameter means all zones or all zones with a transaction.

Use @ owner to denote the zone name.

Type item parameter in the form of section[[id]][.name].

(*) indicates a local operation which requires a configuration.

(#) indicates an optionally blocking operation.

The -b and -f options can be placed right after the command name.

Responses returned by knotc commands depend on the mode:

• In the blocking mode, knotc reports if an error occurred during processing of the command by the server. If
an error is reported, a more detailed information about the failure can usually be found in the server log.

• In the non-blocking (default) mode, knotc doesn't report processing errors. The OK response to triggering
commands means that the command has been successfully sent to the server. To verify if the operation
succeeded, it's necessary to check the server log.

Actions zone-flush, zone-backup, and zone-restore are carried out by the knotd process. The directory specified
must be accessible to the user account that knotd runs under and if the directory already exists, its permissions
must be appropriate for that user account.

Interactive mode

The utility provides interactive mode with basic line editing functionality, command completion, and command
history.

Interactive mode behavior can be customized in ~/.editrc. Refer to editrc(5) for details.

Command history is saved in ~/.knotc_history.

9.2.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.2.4 Examples

Reload the whole server configuration

$ knotc reload

9.2. knotc – Knot DNS control utility 133

Knot DNS Documentation, Release 3.4.0

Flush the example.com and example.org zones

$ knotc zone-flush example.com example.org

Get the current server configuration

$ knotc conf-read server

Get the list of the current zones

$ knotc conf-read zone.domain

Get the primary servers for the example.com zone

$ knotc conf-read 'zone[example.com].master'

Add example.org zone with a zonefile location

$ knotc conf-begin
$ knotc conf-set 'zone[example.org]'
$ knotc conf-set 'zone[example.org].file' '/var/zones/example.org.zone'
$ knotc conf-commit

Get the SOA record for each configured zone

$ knotc zone-read -- @ SOA

9.2.5 See Also

knotd(8), knot.conf(5), editrc(5).

9.3 keymgr – Key management utility

9.3.1 Synopsis

keymgr [config_option] [options] zone_name command

keymgr [config_option] [options] keystore_id command

keymgr [config_option] [-j] -l
keymgr -t parameter...

9.3. keymgr – Key management utility 134

Knot DNS Documentation, Release 3.4.0

9.3.2 Description

The keymgr utility serves for manual key management in Knot DNS server.

Functions for DNSSEC keys and KASP (Key And Signature Policy) management are provided.

The DNSSEC and KASP configuration is stored in a so called KASP database. The database is backed by LMDB.

Parameters

zone_name
Name of the zone the command is executed for.

Config options

-c, --config file
Use a textual configuration file (default is @config_dir@/knot.conf).

-C, --confdb directory
Use a binary configuration database directory (default is @storage_dir@/confdb). The default configura-
tion database, if exists, has a preference to the default configuration file.

-D, --dir path
Use specified KASP database path and default configuration.

Options

-t, --tsig tsig_name [tsig_algorithm [tsig_bits]]
Generates a TSIG key for the given name. Optionally the key algorithm can be specified by its name (default:
hmac-sha256) and a bit length of the key (default: optimal length given by algorithm). The generated TSIG
key is only displayed on stdout: the command does not create a file, nor include the key in a keystore.

-e, --extended
Extended output (listing of keys with full description).

-j, --json
Print the zones or keys in JSON format.

-l, --list
Print the list of zones that have at least one key stored in the configured KASP database.

-x, --mono
Don't generate colorized output.

-X, --color
Force colorized output in the normal mode.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

Note: Keymgr runs with the same user privileges as configured for knotd. For example, if keymgr is run as root,
but the configured user is knot, it won't be able to read files (PEM files, KASP database, ...) readable only by
root.

9.3. keymgr – Key management utility 135

Knot DNS Documentation, Release 3.4.0

Commands

list [timestamp_format]
Prints the list of key IDs and parameters of keys belonging to the zone.

generate [arguments...]
Generates new DNSSEC key and stores it in KASP database. Prints the key ID. This action takes some
number of arguments (see below). Values for unspecified arguments are taken from corresponding policy
(if -c or -C options used) or from Knot policy defaults.

import-bind BIND_key_file
Imports a BIND-style key into KASP database (converting it to PEM format). Takes one argument: path to
BIND key file (private or public, but both MUST exist).

import-pub BIND_pubkey_file
Imports a public key into KASP database. This key won't be rolled over nor used for signing. Takes one
argument: path to BIND public key file.

import-pem PEM_file [arguments...]
Imports a DNSSEC key from PEM file. The key parameters (same as for the generate action) need to be
specified (mainly algorithm, timers...) because they are not contained in the PEM format.

import-pkcs11 key_id [arguments...]
Imports a DNSSEC key from PKCS #11 storage. The key parameters (same as for the generate action) need
to be specified (mainly algorithm, timers...) because they are not available. In fact, no key data is imported,
only KASP database metadata is created.

nsec3-salt [new_salt]
Prints the current NSEC3 salt used for signing. If new_salt is specified, the salt is overwritten. The salt is
printed and expected in hexadecimal, or dash if empty.

local-serial [new_serial]
Print SOA serial stored in KASP database when using on-secondary DNSSEC signing. If new_serial is
specified, the serial is overwritten. After updating the serial, expire the zone (zone-purge +expire +zonefile
+journal) if the server is running, or remove corresponding zone file and journal contents if the server is
stopped.

master-serial [new_serial]
Print SOA serial of the remote master stored in KASP database when using on-secondary DNSSEC signing.
If new_serial is specified, the serial is overwritten (not recommended).

set key_spec [arguments...]
Changes a timing argument (or ksk/zsk) of an existing key to a new value. Key_spec is either the key tag or
a prefix of the key ID, with an optional [id=|keytag=] prefix; arguments are like for generate, but just the
related ones.

ds [key_spec]
Generate DS record (all digest algorithms together) for specified key. Key_spec is like for set, if unspecified,
all KSKs are used.

dnskey [key_spec]
Generate DNSKEY record for specified key. Key_spec is like for ds, if unspecified, all KSKs are used.

delete key_spec
Remove the specified key from zone. If the key was not shared, it is also deleted from keystore.

share key_ID zone_from
Import a key (specified by full key ID) from another zone as shared. After this, the key is owned by both
zones equally.

9.3. keymgr – Key management utility 136

Knot DNS Documentation, Release 3.4.0

Keystore commands

keystore-test
Conduct some tests on the specified keystore. For each algorithm, key generation, import, removal, and use
(signing and verification) are tested. Use a configured keystore_id or - for the default.

keystore-bench [num_threads]
Conduct a signing benchmark on the specified keystore. Random blocks of data are signed by the selected
number of threads (default is 1) in a loop, and the average number of signing operations per second for each
algorithm is returned. Use a configured keystore_id or - for the default.

Commands related to Offline KSK feature

pregenerate [timestamp-from] timestamp-to
Pre-generate ZSKs for use with offline KSK, for the specified period starting from now or specified time.
This function also applies to non-offline KSK keys.

show-offline [timestamp-from] [timestamp-to]
Print pre-generated offline key-related records for specified time interval. If timestamp_to is omitted, it will
be to infinity. If timestamp-from is omitted, it will start from the beginning.

del-offline timestamp-from timestamp-to
Delete pre-generated offline key-related records in specified time interval.

del-all-old
Delete old keys that are in state 'removed'. This function also applies to non-offline KSK keys.

generate-ksr [timestamp-from] timestamp-to
Print to stdout KeySigningRequest based on pre-generated ZSKs for specified time period. If timestamp-from
is omitted, timestamp of the last offline records set is used or now if no records available.

sign-ksr ksr_file
Read KeySigningRequest from a text file, sign it using local keyset and print SignedKeyResponse to stdout.

validate-skr skr_file
Read SignedKeyResponse from a text file and validate the RRSIGs in it if not corrupt.

import-skr skr_file
Read SignedKeyResponse from a text file and import the signatures for later use in zone. If some signatures
have already been imported, they will be deleted for the period from beginning of the SKR to infinity.

Generate arguments

Arguments are separated by space, each of them is in format 'name=value'.

algorithm
Either an algorithm number (e.g. 14) or algorithm name without dashes (e.g. ECDSAP384SHA384).

size
Key length in bits.

ksk
If set to yes, the key will be used for signing DNSKEY rrset. The generated key will also have the Secure
Entry Point flag set to 1.

zsk
If set to yes, the key will be used for signing zone (except DNSKEY rrset). This flag can be set concurrently
with the ksk flag.

sep
Overrides the standard setting of the Secure Entry Point flag.

The following arguments are timestamps of key lifetime (see DNSSEC key states):

9.3. keymgr – Key management utility 137

Knot DNS Documentation, Release 3.4.0

pre_active
Key started to be used for signing, not published (only for algorithm rollover).

publish
Key published.

ready
Key is waiting for submission (only for KSK).

active
Key used for signing.

retire_active
Key still used for signing, but another key is active (only for KSK or algorithm rollover).

retire
Key still published, but no longer used for signing.

post_active
Key no longer published, but still used for signing (only for algorithm rollover).

revoke
Key revoked according to RFC 5011 trust anchor roll-over.

remove
Key deleted.

Timestamps

0
Zero timestamp means infinite future.

UNIX_time
Positive number of seconds since 1970 UTC.

YYYYMMDDHHMMSS
Date and time in this format without any punctuation.

relative_timestamp
A sign character (+, -), a number, and an optional time unit (y, mo, d, h, mi, s). The default unit is one
second. E.g. +1mi, -2mo.

Output timestamp formats

(none)
The timestamps are printed as UNIX timestamp.

human
The timestamps are printed relatively to now using time units (e.g. -2y5mo, +1h13s).

iso
The timestamps are printed in the ISO8601 format (e.g. 2016-12-31T23:59:00).

9.3. keymgr – Key management utility 138

https://datatracker.ietf.org/doc/html/rfc5011.html

Knot DNS Documentation, Release 3.4.0

9.3.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.3.4 Examples

1. Generate new TSIG key:

$ keymgr -t my_name hmac-sha384

2. Generate new DNSSEC key:

$ keymgr example.com. generate algorithm=ECDSAP256SHA256 size=256 \
ksk=true created=1488034625 publish=20170223205611 retire=+10mo remove=+1y

3. Import a DNSSEC key from BIND:

$ keymgr example.com. import-bind ~/bind/Kharbinge4d5.+007+63089.key

4. Configure key timing:

$ keymgr example.com. set 4208 active=+2mi retire=+4mi remove=+5mi

5. Share a KSK from another zone:

$ keymgr example.com. share e687cf927029e9db7184d2ece6d663f5d1e5b0e9 another-
→˓zone.com.

9.3.5 See Also

RFC 6781 - DNSSEC Operational Practices. RFC 7583 - DNSSEC Key Rollover Timing Considerations.

knot.conf(5), knotc(8), knotd(8).

9.4 kjournalprint – Knot DNS journal print utility

9.4.1 Synopsis

kjournalprint [config_option] [options] zone_name

kjournalprint [config_option] -z

9.4.2 Description

The program prints zone history stored in a journal database. As default, changes are colored for terminal.

9.4. kjournalprint – Knot DNS journal print utility 139

https://datatracker.ietf.org/doc/html/rfc6781.html
https://datatracker.ietf.org/doc/html/rfc7583.html

Knot DNS Documentation, Release 3.4.0

Parameters

zone_name
A name of the zone to print the history for.

Config options

-c, --config file
Use a textual configuration file (default is @config_dir@/knot.conf).

-C, --confdb directory
Use a binary configuration database directory (default is @storage_dir@/confdb). The default configura-
tion database, if exists, has a preference to the default configuration file.

-D, --dir path
Use specified journal database path and default configuration.

Options

-z, --zone-list
Instead of reading the journal, display the list of zones in the DB.

-l, --limit limit
Limits the number of displayed changes.

-s, --serial soa
Start at a specific SOA serial.

-H, --check
Enable additional journal semantic checks during printing.

-d, --debug
Debug mode brief output.

-x, --mono
Don't generate colorized output.

-X, --color
Force colorized output.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.4.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.4. kjournalprint – Knot DNS journal print utility 140

Knot DNS Documentation, Release 3.4.0

9.4.4 Examples

Last (most recent) 5 changes without colors:

$ kjournalprint -nl 5 /var/lib/knot/journal example.com.

9.4.5 See Also

knotd(8), knot.conf(5).

9.5 kcatalogprint – Knot DNS catalog print utility

9.5.1 Synopsis

kcatalogprint [config_option] [options]

9.5.2 Description

The program prints zone catalog stored in a catalog database.

Config options

-c, --config file
Use a textual configuration file (default is @config_dir@/knot.conf).

-C, --confdb directory
Use a binary configuration database directory (default is @storage_dir@/confdb). The default configura-
tion database, if exists, has a preference to the default configuration file.

-D, --dir path
Use specified catalog database path and default configuration.

Options

-a, --catalog
Filter the output by catalog zone name.

-m, --member
Filter the output by member zone name.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.5. kcatalogprint – Knot DNS catalog print utility 141

Knot DNS Documentation, Release 3.4.0

9.5.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.5.4 See Also

knotd(8), knot.conf(5).

9.6 kzonecheck – Knot DNS zone file checking tool

9.6.1 Synopsis

kzonecheck [options] filename

9.6.2 Description

The utility checks zone file syntax and runs semantic checks on the zone content. The executed checks are the
same as the checks run by the Knot DNS server.

Please, refer to the semantic-checks configuration option in knot.conf(5) for the full list of available semantic
checks.

Parameters

filename
Path to the zone file to be checked. For reading from stdin use /dev/stdin or just -.

Options

-o, --origin origin
Zone origin. If not specified, the origin is determined from the file name (possibly removing the .zone
suffix).

-d, --dnssec on|off
Also check DNSSEC-related records. The default is to decide based on the existence of a RRSIG for SOA.

-z, --zonemd
Also check the zone hash against a ZONEMD record, which is required to exist.

-t, --time time
Current time specification. Use UNIX timestamp, YYYYMMDDHHmmSS format, or [+/-]time[unit] for-
mat, where unit can be Y, M, D, h, m, or s. Default is current UNIX timestamp.

-p, --print
Print the zone on stdout.

-v, --verbose
Enable debug output.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.6. kzonecheck – Knot DNS zone file checking tool 142

Knot DNS Documentation, Release 3.4.0

9.6.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.6.4 See Also

knotd(8), knot.conf(5).

9.7 kzonesign – DNSSEC signing utility

9.7.1 Synopsis

kzonesign [config_option] [options] zone_name

9.7.2 Description

This utility reads the zone's zone file, signs the zone according to given configuration, and writes the signed zone
file back. An alternative mode is DNSSEC validation of the given zone. The signing or validation can run in
parallel if enabled in the configuration (see policy.signing-threads and zone.adjust-threads).

Parameters

zone_name
A name of the zone to be signed.

Config options

-c, --config file
Use a textual configuration file (default is @config_dir@/knot.conf).

-C, --confdb directory
Use a binary configuration database directory (default is @storage_dir@/confdb). The default configura-
tion database, if exists, has a preference to the default configuration file.

Options

-o, --outdir dir_name
Write the output zone file to the specified directory instead of the configured one.

-r, --rollover
Allow key roll-overs and NSEC3 re-salt. In order to finish possible KSK submission, set the KSK's active
timestamp to now (+0) using keymgr.

-v, --verify
Instead of (re-)signing the zone, just verify that the zone is correctly signed.

-t, --time timestamp
Sign/verify the zone (and roll the keys if necessary) as if it was at the time specified by timestamp.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.7. kzonesign – DNSSEC signing utility 143

Knot DNS Documentation, Release 3.4.0

9.7.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.7.4 See Also

knot.conf(5), keymgr(8).

9.8 kdig – Advanced DNS lookup utility

9.8.1 Synopsis

kdig [common-settings] [query [settings]]...

kdig -h

9.8.2 Description

This utility sends one or more DNS queries to a nameserver. Each query can have individual settings, or it can be
specified globally via common-settings, which must precede query specification.

Parameters

query
name | -q name | -x address | -G tapfile

common-settings, settings
[query_class] [query_type] [@server]... [options]

name
Is a domain name that is to be looked up.

server
Is a domain name or an IPv4 or IPv6 address of the nameserver to send a query to. An additional port can
be specified using address:port ([address]:port for IPv6 address), address@port, or address#port notation. A
value which begins with '/' character is considered an absolute UNIX socket path. If no server is specified,
the servers from /etc/resolv.conf are used.

If no arguments are provided, kdig sends NS query for the root zone.

Query classes

A query_class can be either a DNS class name (IN, CH) or generic class specification CLASSXXXXX where
XXXXX is a corresponding decimal class number. The default query class is IN.

9.8. kdig – Advanced DNS lookup utility 144

Knot DNS Documentation, Release 3.4.0

Query types

A query_type can be either a DNS resource record type (A, AAAA, NS, SOA, DNSKEY, ANY, etc.) or one of the
following:

TYPEXXXXX
Generic query type specification where XXXXX is a corresponding decimal type number.

AXFR
Full zone transfer request.

IXFR=serial
Incremental zone transfer request for specified SOA serial number (i.e. all zone updates since the specified
zone version are to be returned).

NOTIFY=serial
Notify message with a SOA serial hint specified.

NOTIFY
Notify message with a SOA serial hint unspecified.

The default query type is A.

Options

-4
Use the IPv4 protocol only.

-6
Use the IPv6 protocol only.

-b address
Set the source IP address of the query to address. The address must be a valid address for local interface or
:: or 0.0.0.0. An optional port can be specified in the same format as the server value.

-c class
An explicit query_class specification. See possible values above.

-d
Enable debug messages.

-h, --help
Print the program help.

-k keyfile
Use the TSIG key stored in a file keyfile to authenticate the request. The file must contain the key in the same
format as accepted by the -y option.

-p port
Set the nameserver port number or service name to send a query to. The default port is 53.

-q name
Set the query name. An explicit variant of name specification. If no name is provided, empty question
section is set.

-t type
An explicit query_type specification. See possible values above.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

-x address
Send a reverse (PTR) query for IPv4 or IPv6 address. The correct name, class and type is set automatically.

9.8. kdig – Advanced DNS lookup utility 145

Knot DNS Documentation, Release 3.4.0

-y [alg:]name:key
Use the TSIG key named name to authenticate the request. The alg part specifies the algorithm (the default
is hmac-sha256) and key specifies the shared secret encoded in Base64.

-E tapfile
Export a dnstap trace of the query and response messages received to the file tapfile.

-G tapfile
Generate message output from a previously saved dnstap file tapfile.

+[no]multiline
Wrap long records to more lines and improve human readability.

+[no]short
Show record data only.

+[no]generic
Use the generic representation format when printing resource record types and data.

+[no]crypto
Display the DNSSEC keys and signatures values in base64, instead of omitting them.

+[no]aaflag
Set the AA flag.

+[no]tcflag
Set the TC flag.

+[no]rdflag
Set the RD flag.

+[no]recurse
Same as +[no]rdflag

+[no]raflag
Set the RA flag.

+[no]zflag
Set the zero flag bit.

+[no]adflag
Set the AD flag.

+[no]cdflag
Set the CD flag.

+[no]dnssec
Set the DO flag.

+[no]all
Show all packet sections.

+[no]qr
Show the query packet.

+[no]header
Show the packet header.

+[no]comments
Show commented section names.

+[no]opt
Show the EDNS pseudosection.

+[no]opttext
Try to show unknown EDNS options as text.

9.8. kdig – Advanced DNS lookup utility 146

Knot DNS Documentation, Release 3.4.0

+[no]optpresent
Show EDNS in presentation format according to the specification in version draft-peltan-edns-presentation-
format-01.

+[no]question
Show the question section.

+[no]answer
Show the answer section.

+[no]authority
Show the authority section.

+[no]additional
Show the additional section.

+[no]tsig
Show the TSIG pseudosection.

+[no]stats
Show trailing packet statistics.

+[no]class
Show the DNS class.

+[no]ttl
Show the TTL value.

+[no]tcp
Use the TCP protocol (default is UDP for standard query and TCP for AXFR/IXFR).

+[no]fastopen
Use TCP Fast Open.

+[no]ignore
Don't use TCP automatically if a truncated reply is received.

+[no]keepopen
Keep TCP connection open for the following query if it has the same connection configuration. This applies
to +tcp, +tls, and +https operations. The connection is considered in the context of a single kdig call only.

+[no]tls
Use TLS with the Opportunistic privacy profile (RFC 7858#section-4.1).

+[no]tls-ca[=FILE]
Use TLS with a certificate validation. Certification authority certificates are loaded from the specified PEM
file (default is system certificate storage if no argument is provided). Can be specified multiple times. If the
+tls-hostname option is not provided, the name of the target server (if specified) is used for strict authenti-
cation.

+[no]tls-pin=BASE64
Use TLS with the Out-of-Band key-pinned privacy profile (RFC 7858#section-4.2). The PIN must be a
Base64 encoded SHA-256 hash of the X.509 SubjectPublicKeyInfo. Can be specified multiple times.

+[no]tls-hostname=STR
Use TLS with a remote server hostname check.

+[no]tls-sni=STR
Use TLS with a Server Name Indication.

+[no]tls-keyfile=FILE
Use TLS with a client keyfile.

+[no]tls-certfile=FILE
Use TLS with a client certfile.

9.8. kdig – Advanced DNS lookup utility 147

https://www.ietf.org/archive/id/draft-peltan-edns-presentation-format-01.html
https://www.ietf.org/archive/id/draft-peltan-edns-presentation-format-01.html
https://datatracker.ietf.org/doc/html/rfc7858.html#section-4.1
https://datatracker.ietf.org/doc/html/rfc7858.html#section-4.2

Knot DNS Documentation, Release 3.4.0

+[no]tls-ocsp-stapling[=H]
Use TLS with a valid stapled OCSP response for the server certificate (%u or specify hours). OCSP responses
older than the specified period are considered invalid.

+[no]https[=URL]
Use HTTPS (DNS-over-HTTPS) in wire format (RFC 1035#section-4.2.1). It is also possible to specify
URL=[authority][/path] where request will be sent to. Any leading scheme and authority indicator (i.e. //)
are ignored. Authority might also be specified as the server (using the parameter @). If path is specified and
authority is missing, then the server is used as authority together with the specified path. Library libnghttp2
is required.

+[no]https-get
Use HTTPS with HTTP/GET method instead of the default HTTP/POST method. Library libnghttp2 is
required.

+[no]quic
Use QUIC (DNS-over-QUIC).

+[no]nsid
Request the nameserver identifier (NSID).

+[no]bufsize=B
Set EDNS buffer size in bytes (default is 1232 bytes).

+[no]padding[=B]
Use EDNS(0) padding option to pad queries, optionally to a specific size. The default is to pad queries with a
sensible amount when using +tls, and not to pad at all when queries are sent without TLS. With no argument
(i.e., just +padding) pad every query with a sensible amount regardless of the use of TLS. With +nopadding,
never pad.

+[no]alignment[=B]
Align the query to B-byte-block message using the EDNS(0) padding option (default is no or 128 if no
argument is specified).

+[no]subnet=SUBN
Set EDNS(0) client subnet SUBN=addr/prefix.

+[no]edns[=N]
Use EDNS version (default is 0). EDNS(0) is enabled by default.

+[no]timeout=T
Set the wait-for-reply interval in seconds (default is 5 seconds). This timeout applies to each query attempt.
Zero value or notimeout is interpreted as infinity.

+[no]retry=N
Set the number (>=0) of UDP retries (default is 2). This doesn't apply to AXFR/IXFR.

+[no]expire
Sets the EXPIRE EDNS option.

+[no]cookie[=HEX]
Attach EDNS(0) cookie to the query.

+[no]badcookie
Repeat a query with the correct cookie.

+[no]ednsopt[=CODE[:HEX]]
Send custom EDNS option. The CODE is EDNS option code in decimal, HEX is an optional hex encoded
string to use as EDNS option value. This argument can be used multiple times. +noednsopt clears all EDNS
options specified by +ednsopt.

+[no]proxy=SRC_ADDR[#SRC_PORT]-DST_ADDR[#DST_PORT]
Add PROXYv2 header with the specified source and destination addresses to the query. The default source
port is 0 and destination port 53.

+[no]json
Use JSON for output encoding (RFC 8427).

9.8. kdig – Advanced DNS lookup utility 148

https://datatracker.ietf.org/doc/html/rfc1035.html#section-4.2.1

Knot DNS Documentation, Release 3.4.0

+noidn
Disable the IDN transformation to ASCII and vice versa. IDN support depends on libidn2 availability during
project building! If used in common-settings, all IDN transformations are disabled. If used in the individual
query settings, transformation from ASCII is disabled on output for the particular query. Note that IDN
transformation does not preserve domain name letter case.

9.8.3 Notes

Options -k and -y can not be used simultaneously.

Dnssec-keygen keyfile format is not supported. Use keymgr(8) instead.

9.8.4 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.8.5 Examples

1. Get A records for example.com:

$ kdig example.com A

2. Perform AXFR for zone example.com from the server 192.0.2.1:

$ kdig example.com -t AXFR @192.0.2.1

3. Get A records for example.com from 192.0.2.1 and reverse lookup for address 2001:DB8::1 from 192.0.2.2.
Both using the TCP protocol:

$ kdig +tcp example.com -t A @192.0.2.1 -x 2001:DB8::1 @192.0.2.2

4. Get SOA record for example.com, use TLS, use system certificates, check for specified hostname, check for
certificate pin, and print additional debug info:

$ kdig -d @185.49.141.38 +tls-ca +tls-host=getdnsapi.net \
+tls-pin=foxZRnIh9gZpWnl+zEiKa0EJ2rdCGroMWm02gaxSc9S= soa example.com

5. DNS over HTTPS examples (various DoH implementations):

$ kdig @1.1.1.1 +https example.com.
$ kdig @193.17.47.1 +https=/doh example.com.
$ kdig @8.8.4.4 +https +https-get example.com.
$ kdig @8.8.8.8 +https +tls-hostname=dns.google +fastopen example.com.

6. More queries share one DoT connection:

$ kdig @1.1.1.1 +tls +keepopen abc.example.com A mail.example.com AAAA

9.8. kdig – Advanced DNS lookup utility 149

Knot DNS Documentation, Release 3.4.0

9.8.6 Files

/etc/resolv.conf

9.8.7 See Also

khost(1), knsupdate(1), keymgr(8).

9.9 khost – Simple DNS lookup utility

9.9.1 Synopsis

khost [options] name [server]

9.9.2 Description

This utility sends a DNS query for the name to the server and prints a reply in more user-readable form. For more
advanced DNS queries use kdig instead.

Parameters

name
Is a domain name that is to be looked up. If the name is IPv4 or IPv6 address the PTR query type is used.

server
Is a name or an address of the nameserver to send a query to. The address can be specified using [address]:port
notation. If no server is specified, the servers from /etc/resolv.conf are used.

If no arguments are provided, khost prints a short help.

Options

-4
Use the IPv4 protocol only.

-6
Use the IPv6 protocol only.

-a
Send ANY query with verbose mode.

-d
Enable debug messages.

-h, --help
Print the program help.

-r
Disable recursion.

-T
Use the TCP protocol.

-v
Enable verbose output.

9.9. khost – Simple DNS lookup utility 150

Knot DNS Documentation, Release 3.4.0

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

-w
Wait forever for the reply.

-c class
Set the query class (e.g. CH, CLASS4). The default class is IN.

-t type
Set the query type (e.g. NS, IXFR=12345, TYPE65535). The default is to send 3 queries (A, AAAA and
MX).

-R retries
The number (>=0) of UDP retries to query a nameserver. The default is 1.

-W wait
The time to wait for a reply in seconds. This timeout applies to each query try. The default is 2 seconds.

9.9.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.9.4 Examples

1. Get the A, AAAA and MX records for example.com:

$ khost example.com

2. Get the reverse record for address 192.0.2.1:

$ khost 192.0.2.1

3. Perform a verbose zone transfer for zone example.com:

$ khost -t AXFR -v example.com

9.9.5 Files

/etc/resolv.conf

9.9.6 See Also

kdig(1), knsupdate(1).

9.10 knsec3hash – NSEC hash computation utility

9.10.1 Synopsis

knsec3hash salt algorithm iterations name

knsec3hash algorithm flags iterations salt name

knsec3hash [-h] [-V]

9.10. knsec3hash – NSEC hash computation utility 151

Knot DNS Documentation, Release 3.4.0

9.10.2 Description

This utility generates a NSEC3 hash for a given domain name and parameters of NSEC3 hash.

Parameters

salt
Specifies a binary salt encoded as a hexadecimal string.

algorithm
Specifies a hashing algorithm by number. Currently, the only supported algorithm is SHA-1 (number 1).

iterations
Specifies the number of additional iterations of the hashing algorithm.

name
Specifies the domain name to be hashed.

flags
Specifies NSEC3 flags as an unsigned integer.

Options

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.10.3 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.10.4 Examples

$ knsec3hash 1 0 10 c01dcafe knot-dns.cz
7PTVGE7QV67EM61ROS9238P5RAKR2DM7 (salt=c01dcafe, hash=1, iterations=10)

$ knsec3hash - 1 0 net
A1RT98BS5QGC9NFI51S9HCI47ULJG6JH (salt=-, hash=1, iterations=0)

9.10.5 See Also

RFC 5155 – DNS Security (DNSSEC) Hashed Authenticated Denial of Existence.

knotc(8), knotd(8).

9.10. knsec3hash – NSEC hash computation utility 152

https://datatracker.ietf.org/doc/html/rfc5155.html

Knot DNS Documentation, Release 3.4.0

9.11 knsupdate – Dynamic DNS update utility

9.11.1 Synopsis

knsupdate [-v] [options] [filename]

knsupdate [-q] [quic_options] [options] [filename]

9.11.2 Description

This utility sends Dynamic DNS update messages to a DNS server. Update content is read from a file (if the
parameter filename is given) or from the standard input.

The format of updates is textual and is made up of commands. Every command is placed on the separate line of
the input. Lines starting with a semicolon are comments and are not processed.

Parameters

filename
Path to the file with knsupdate commands.

Options

-T, --tcp
Use a TCP connection. (-v can be used for compatibility with nsupdate).

-S, --tls
Use a TLS connection.

-Q, --quic
Use a QUIC connection.

-p, --port number
Set the port to use for connections to the server (if not explicitly specified in the update). The default is 53
for UDP/TCP or 853 for QUIC.

-r, --retry count
The number of retries for UDP requests. The default is 3.

-t, --timeout seconds
The total timeout (for all UDP update tries) of the update request in seconds. The default is 12. If set to zero,
the timeout is infinite.

-y, --tsig [alg:]name:key
Use the TSIG key with a name name to authenticate the request. The alg part specifies the algorithm (the
default is hmac-sha256) and key specifies the shared secret encoded in Base64.

-k, --tsigfile path
Use the TSIG key stored in a file keyfile to authenticate the request. The file should contain the key in the
same format, which is accepted by the -y option.

-d, --debug
Enable debug messages.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.11. knsupdate – Dynamic DNS update utility 153

Knot DNS Documentation, Release 3.4.0

QUIC/TLS options

-H, --hostname string
Enable remote server hostname validation.

-P, --pin base64
Use Out-of-Band key-pinned privacy profile (RFC 7858#section-4.2). The PIN must be a Base64 encoded
SHA-256 hash of the X.509 SubjectPublicKeyInfo. Can be specified multiple times.

-A, --ca [path]
Enable certificate validation. Certification authority certificates are loaded from the specified PEM file (de-
fault is system certificate storage if no argument is provided). Can be specified multiple times.

-E, --certfile path
Path to a client certificate file.

-K, --keyfile path
Path to a client key file.

-s, --sni string
Use specified Server Name Indication.

Commands

server name [port]
Specifies a receiving server of the dynamic update message. The name parameter can be either a host name
or an IP address. If the port is not specified, the default port is used. The default port value can be controlled
using the -p program option.

local address [port]
Specifies outgoing address and port. If no local is specified, the address and port are set by the system
automatically. The default port number is 0.

zone name
Specifies that all updates are done within a zone name. The zone name doesn't have a default and must be
set explicitly.

origin name
Specifies fully qualified domain name suffix which is appended to non-fqd owners in update commands. The
default is the terminal label (.).

class name
Sets name as the default class for all updates. If not used, the default class is IN.

ttl value
Sets value as the default TTL (in seconds). If not used, the default value is 3600.

key [alg:]name key
Specifies the TSIG key named name to authenticate the request. An optional alg algorithm can be specified.
This command has the same effect as the program option -y.

[prereq] nxdomain name
Adds a prerequisite for a non-existing record owned by name.

[prereq] yxdomain name
Adds a prerequisite for an existing record owned by name.

[prereq] nxrrset name [class] type
Adds a prerequisite for a non-existing record of the type owned by name. Internet class is expected.

[prereq] yxrrset name [class] type [data]
Adds a prerequisite for an existing record of the type owned by name with optional data. Internet class is
expected.

9.11. knsupdate – Dynamic DNS update utility 154

Knot DNS Documentation, Release 3.4.0

[update] add name [ttl] [class] type data
Adds a request to add a new resource record into the zone. Please note that if the name is not fully qualified
domain name, the current origin name is appended to it.

[update] del[ete] name [ttl] [class] [type] [data]
Adds a request to remove all (or matching class, type or data) resource records from the zone. There is the
same requirement for the name parameter as in update add command. The ttl item is ignored.

show
Displays current content of the update message.

send
Sends the current update message and cleans the list of updates.

answer
Displays the last answer from the server.

debug
Enable debugging. This command has the same meaning as the -d program option.

exit
End the program.

9.11.3 Notes

Options -k and -y can not be used simultaneously.

Neither tsig-keygen(8) nor dnssec-keygen(1) keyfile formats are supported. Use keymgr(8) to construct a string
for -y or the file passed to -k.

Zone name/server guessing is not supported if the zone name/server is not specified.

An empty line doesn't send the update.

Interactive mode

The utility provides interactive mode with basic line editing functionality, command completion, and command
history.

Interactive mode behavior can be customized in ~/.editrc. Refer to editrc(5) for details.

Command history is saved in ~/.knsupdate_history.

9.11.4 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.11.5 Examples

1. Send one update of the zone example.com to the server 192.168.1.1. The update contains two new records:

$ knsupdate
knsupdate> server 192.168.1.1
knsupdate> zone example.com.
knsupdate> origin example.com.
knsupdate> ttl 3600
knsupdate> add test1.example.com. 7200 A 192.168.2.2
knsupdate> add test2 TXT "hello"
knsupdate> show
knsupdate> send

(continues on next page)

9.11. knsupdate – Dynamic DNS update utility 155

Knot DNS Documentation, Release 3.4.0

(continued from previous page)

knsupdate> answer
knsupdate> exit

9.11.6 See Also

kdig(1), khost(1), keymgr(8), editrc(5).

9.12 kxdpgun – DNS benchmarking tool

9.12.1 Synopsis

kxdpgun [options] -i filename target

9.12.2 Description

Powerful generator of DNS traffic, sending and receiving packets through XDP.

Queries are generated according to a textual file which is read sequentially in a loop until a configured duration
elapses. The order of queries is not guaranteed. Responses are received (unless disabled) and counted, but not
checked against queries.

The number of parallel threads is autodetected according to the number of queues configured for the network
interface.

Parameters

filename
Path to the queries file. See the description below regarding the file format.

target
Either the domain name, IPv4 or IPv6 address of a remote target.

Options

-t, --duration seconds
Duration of traffic generation, specified as a decimal number in seconds (default is 5.0).

-T, --tcp[=debug_mode]
Send queries over TCP. See the list of optional debug modes below.

-U, --quic[=debug_mode]
Send queries over QUIC. See the list of optional debug modes below.

-Q, --qps queries
Number of queries-per-second (approximately) to be sent (default is 1000). The program is not optimized
for low speeds at which it may lose communication packets. The recommended minimum speed is 2 packets
per thread (Rx/Tx queue).

-b, --batch size
Send more queries in a batch. Improves QPS but may affect the counterpart's packet loss (default is 10 for
UDP and 1 for TCP/QUIC).

-r, --drop
Drop incoming responses. Improves QPS, but disables response statistics.

9.12. kxdpgun – DNS benchmarking tool 156

Knot DNS Documentation, Release 3.4.0

-p, --port number
Remote destination port (default is 53 for UDP/TCP, 853 for QUIC).

-F, --affinity cpu_spec
CPU affinity for all threads specified in the format [<cpu_start>][s<cpu_step>], where <cpu_start> is the
CPU ID for the first thread and <cpu_step> is the CPU ID increment for next thread (default is 0s1).

-i, --infile filename
Path to a file with query templates.

-B, --binary
Specify that input file is in binary format. This format is similar to the TCP DNS message format. The file
contains records formated as 2-octet length (network order) followed by a message in DNS wire format.

-I, --interface interface
Network interface for outgoing communication. This can be useful in situations when the interfaces are in a
bond for example.

-l, --local localIP[/prefix]
Override the auto-detected source IP address. If an address range is specified instead, various IPs from the
range will be used for different queries uniformly (address range not supported in the QUIC mode).

-L, --mac-local
Override auto-detected local MAC address.

-R, --mac-remote
Override auto-detected remote MAC address.

-v, --vlan id
Add VLAN 802.1Q header with the given id. VLAN offloading should be disabled.

-e, --edns-size size
EDNS UDP payload size, range 512-4096 (default is 1232). Note that over XDP the maximum supported
MTU is 1790.

-m, --mode mode
Set the XDP mode. Supported values are:

• auto (default) – the XDP mode is selected automatically to achieve the best performance, which means
that native driver support is preferred over the generic one, and zero-copy is used if available.

• copy – the XDP socket copy mode is forced even if zero-copy is available. This can resolve various
driver issues, but at the cost of lower performance.

• generic – the generic XDP implementation is forced even if native implementation is available. This
mode doesn't require support from the driver nor hardware, but offers the worst performance.

-G, --qlog path
Generate qlog files in the directory specified by path. The directory has to exist.

This option is ignored if not in the QUIC mode. The recommended usage is with --quic=R or with low QPS.
Otherwise, too many files are generated.

-j, --json
Print statistics formatted as json.

-S, --stats-period period
Report statistics automatically every period milliseconds.

These reports contain only metrics collected in the given period.

-h, --help
Print the program help.

-V, --version
Print the program version. The option -VV makes the program print the compile time configuration sum-
mary.

9.12. kxdpgun – DNS benchmarking tool 157

Knot DNS Documentation, Release 3.4.0

Queries file format

Each line describes a query in the form:

query_name query_type [flags]

Where query_name is a domain name to be queried, query_type is a record type name, and flags is a single character:

E Send query with EDNS.

D Request DNSSEC (EDNS + DO flag).

TCP/QUIC debug modes

0
Perform full handshake for all connections (QUIC only).

1
Just send SYN (Initial) and receive SYN-ACK (Handshake).

2
Perform TCP/QUIC handshake and don't send anything, allow close initiated by counterpart.

3
Perform TCP/QUIC handshake and don't react further.

5
Send incomplete query (N-1 bytes) and don't react further.

7
Send query and don't ACK the response or anything further.

8
Don't close the connection and ignore close by counterpart.

9
Operate normally except for not ACKing the final FIN+ACK (TCP only).

R
Instead of opening a connection for each query, reuse connections.

Signals

Sending USR1 signal to a running process triggers current statistics dump to the standard output. In combination
with -S may cause erratic printout timing.

9.12.3 Notes

Linux kernel 4.18+ is required.

The utility has to be executed under root or with these capabilities: CAP_NET_RAW, CAP_NET_ADMIN,
CAP_SYS_ADMIN, CAP_IPC_LOCK, and CAP_SYS_RESOURCE (Linux < 5.11).

The utility allocates source UDP/TCP ports from the range 2000-65535.

Due to the multi-threaded program structure there are slight discrepancies in the timespan during which metrics
are collected for any given thread. The statistics printouts ignore this and are thus ever-so-slightly inaccurate. The
error margin decreases proportionally to the volume of data & timespan over which they are collected.

9.12. kxdpgun – DNS benchmarking tool 158

Knot DNS Documentation, Release 3.4.0

9.12.4 Exit values

Exit status of 0 means successful operation. Any other exit status indicates an error.

9.12.5 Examples

Manually created queries file:

abc6.example.com. AAAA
nxdomain.example.com. A
notzone. A
a.example.com. NS E
ab.example.com. A D
abcd.example.com. DS D

Queries file generated from a zone file (Knot DNS format):

cat ZONE_FILE | awk "{print \$1,\$3}" | grep -E "(NS|DS|A|AAAA|PTR|MX|SOA)$" | sort -
→˓u -R > queries.txt

Basic usage:

kxdpgun -i ~/queries.txt 2001:DB8::1

Using UDP with increased batch size:

kxdpgun -t 20 -Q 1000000 -i ~/queries.txt -b 20 -p 8853 192.0.2.1

Using TCP:

kxdpgun -t 20 -Q 100000 -i ~/queries.txt -T -p 8853 192.0.2.1

9.12.6 See Also

kdig(1).

9.12. kxdpgun – DNS benchmarking tool 159

CHAPTER

TEN

MIGRATION

10.1 Upgrade 2.4.x to 2.5.x

This chapter describes some steps necessary after upgrading Knot DNS from version 2.4.x to 2.5.x.

10.1.1 Building changes

The --enable-dnstap configure option now enables the dnstap support in kdig only! To build the dnstap query
module, --with-module-dnstap have to be used.

Since Knot DNS version 2.5.0 each query module can be configured to be:

• disabled: --with-module-MODULE_NAME=no

• embedded: --with-module-MODULE_NAME=yes

• external: --with-module-MODULE_NAME=shared (excluding dnsproxy and onlinesign)

The --with-timer-mapsize configure option was replaced with the runtime template.max-timer-db-size
configuration option.

10.1.2 KASP DB migration

Knot DNS version 2.4.x and earlier uses JSON files to store DNSSEC keys metadata, one for each zone. 2.5.x
versions store those in binary format in a LMDB, all zones together. The migration is possible with the pykeymgr
script:

$ pykeymgr -i path/to/keydir

The path to KASP DB directory is configuration-dependent, usually it is the keys subdirectory in the zone storage.

In rare installations, the JSON files might be spread across more directories. In such case, it is necessary to put
them together into one directory and migrate at once.

10.1.3 Configuration changes

It is no longer possible to configure KASP DB per zone or in a non-default template. Ensure just one common
KASP DB configuration in the default template.

As Knot DNS version 2.5.0 brings dynamically loaded modules, some modules were renamed for technical reasons.
So it is necessary to rename all occurrences (module section names and references from zones or templates) of the
following module names in the configuration:

mod-online-sign -> mod-onlinesign

mod-synth-record -> mod-synthrecord

160

https://gitlab.nic.cz/knot/knot-dns/blob/2.6/src/utils/pykeymgr/pykeymgr.in

Knot DNS Documentation, Release 3.4.0

10.2 Upgrade 2.5.x to 2.6.x

Upgrading from Knot DNS version 2.5.x to 2.6.x is almost seamless.

10.2.1 Configuration changes

The dsa and dsa-nsec3-sha1 algorithm values are no longer supported by the algorithm option.

The ixfr-from-differences zone/template option was deprecated in favor of the zonefile-load option.

10.3 Upgrade 2.6.x to 2.7.x

Upgrading from Knot DNS version 2.6.x to 2.7.x is seamless if no obsolete configuration or module rosedb is used.

10.4 Upgrade 2.7.x to 2.8.x

Upgrading from Knot DNS version 2.7.x to 2.8.x is seamless.

However, if the previous version was migrated (possibly indirectly) from version 2.5.x, the format of the keys stored
in Keys And Signature Policy Database is no longer compatible and needs to be updated.

The easiest ways to update how keys are stored in KASP DB is to modify with Keymgr version 2.7.x some of each
key's parameters in an undamaging way, e.g.:

$ keymgr example.com. list
$ keymgr example.com. set <keyTag> created=1
$ keymgr example.com. set <keyTag2> created=1
...

10.5 Upgrade 2.8.x to 2.9.x

Upgrading from Knot DNS version 2.8.x to 2.9.x is almost seamless but check the following changes first.

10.5.1 Configuration changes

• Imperfect runtime reconfiguration of udp-workers, tcp-workers, and listen is no longer supported.

• Replaced options (with backward compatibility):

10.2. Upgrade 2.5.x to 2.6.x 161

Knot DNS Documentation, Release 3.4.0

Old section Old item name New section New item name
server tcp-reply-timeout [s] server tcp-remote-io-timeout [ms]
server max-tcp-clients server tcp-max-clients
server max-udp-payload server udp-max-payload
server max-ipv4-udp-payload server udp-max-payload-ipv4
server max-ipv6-udp-payload server udp-max-payload-ipv6
template journal-db database journal-db
template journal-db-mode database journal-db-mode
template max-journal-db-size database journal-db-max-size
template kasp-db database kasp-db
template max-kasp-db-size database kasp-db-max-size
template timer-db database timer-db
template max-timer-db-size database timer-db-max-size
zone max-journal-usage zone journal-max-usage
zone max-journal-depth zone journal-max-depth
zone max-zone-size zone zone-max-size
zone max-refresh-interval zone refresh-max-interval
zone min-refresh-interval zone refresh-min-interval

• Removed options (no backward compatibility):

– server.tcp-handshake-timeout

– zone.request-edns-option

• New default value for:

– tcp-workers

– tcp-max-clients

– udp-max-payload

– udp-max-payload-ipv4

– udp-max-payload-ipv6

• New DNSSEC policy option rrsig-pre-refresh may affect configuration validity, which is rrsig-refresh
+ rrsig-pre-refresh < rrsig-lifetime

10.5.2 Miscellaneous changes

• Memory use estimation via knotc zone-memstats was removed

• Based on https://tools.ietf.org/html/draft-ietf-dnsop-server-cookies the module DNS Cookies was updated
to be interoperable

• Number of open files limit is set to 1048576 in upstream packages

10.6 Upgrade 2.9.x to 3.0.x

Knot DNS version 3.0.x is functionally compatible with 2.9.x with the following exceptions.

10.6. Upgrade 2.9.x to 3.0.x 162

https://tools.ietf.org/html/draft-ietf-dnsop-server-cookies

Knot DNS Documentation, Release 3.4.0

10.6.1 ACL

Configuration option update-owner-name is newly FQDN-sensitive. It means that values a.example.com and
a.example.com. are not equivalent.

10.6.2 Module synthrecord

Reverse IPv6 address shortening is enabled by default. For example, the module generates:

dynamic-2620-0-b61-100--1.test. 400 IN AAAA 2620:0:b61:100::1

instead of:

dynamic-2620-0000-0b61-0100-0000-0000-0000-0001.test. 400 IN AAAA 2620:0:b61:100::1

10.6.3 Query module API change

The following functions require additional parameter (thread id – qdata->params->thread_id) on the second
position:

knotd_mod_stats_incr()
knotd_mod_stats_decr()
knotd_mod_stats_store()

10.6.4 Building notes

• The embedded library LMDB is no longer part of the source code. Almost every modern operating system
has a sufficient version of this library.

• DoH support in kdig requires optional library libnghttp2.

• XDP support on Linux requires optional library libbpf >= 0.0.6. If not available, an embedded library can
be used via --enable-xdp=yes configure option.

10.7 Upgrade 3.0.x to 3.1.x

Knot DNS version 3.1.x is functionally compatible with 3.0.x with the following exceptions.

10.7.1 Configuration changes

• Automatic SOA serial incrementation (zonefile-load: difference-no-serial) requires having full
zone stored in the journal (journal-content: all). This change is necessary for reliable operation.

• Replaced options (with backward compatibility):

Old section Old item name New section New item name
server listen-xdp xdp listen

• Ignored obsolete options (with a notice log):

– server.max-ipv4-udp-payload

– server.max-ipv6-udp-payload

– server.max-udp-payload

10.7. Upgrade 3.0.x to 3.1.x 163

Knot DNS Documentation, Release 3.4.0

– server.max-tcp-clients

– server.tcp-reply-timeout

– zone.max-journal-depth

– zone.max-journal-usage

– zone.max-refresh-interval

– zone.min-refresh-interval

– zone.max-zone-size

– template.journal-db

– template.kasp-db

– template.timer-db

– template.max-journal-db-size

– template.max-timer-db-size

– template.max-kasp-db-size

– template.journal-db-mode

• Silently ignored obsolete options:

– server.tcp-handshake-timeout

– zone.disable-any

10.7.2 Zone backup and restore

The online backup format has changed slightly since 3.0 version. For zone-restore from backups in the previous
format, it's necessary to set the -f option. Offline restore procedure of zone files from online backups is different
than what it was before. The details are described in Data and metadata backup.

10.7.3 Building notes

• The configure option --enable-xdp=yes has slightly changed its semantics. It first tries to find an external
library libbpf. If it's not detected, the embedded one is used instead.

• The kxdpgun tool also depends on library libmnl.

10.7.4 Packaging

Users who use module geoip or dnstap might need installing an additional package with the module.

10.8 Upgrade 3.1.x to 3.2.x

Knot DNS version 3.2.x is functionally compatible with 3.1.x with the following exceptions.

10.8. Upgrade 3.1.x to 3.2.x 164

Knot DNS Documentation, Release 3.4.0

10.8.1 Configuration changes

• Default value for:

– journal-max-depth was lowered to 20. This change may trigger journal history merging.

– nsec3-iterations was lowered to 0. This change may trigger complete NSEC3 chain reconstruction!

– rrsig-refresh is set to propagation-delay + "zone maximum TTL". This change affects effective RRSIG
lifetime!

• New checks:

– rrsig-refresh must be high enough to ensure all RRSIGs are refreshed before their expiration.

– A notice log message is emitted if algorithm is deprecated.

• Ignored obsolete option (with a notice log):

– server.listen-xdp

10.8.2 Utilities:

• knotc prints simplified zones status by default. Use -e for full output.

• keymgr uses the brief key listing mode by default. Use -e for full output.

• keymgr parameter -d was renamed to -D.

• kjournalprint parameter -c was renamed to -H.

10.8.3 Packaging

• Linux distributions Debian 9 and Ubuntu 16.04 are no longer supported.

• Packages for CentOS 7 are stored in a separate COPR repository cznic/knot-dns-latest-centos7.

• Utilities kzonecheck, kzonesign, and knsec3hash are located in a new knot-dnssecutils package.

10.8.4 Python

• Compatibility with Python 2 was removed.

10.9 Upgrade 3.2.x to 3.3.x

There are some changes between Knot DNS versions 3.3.x and 3.2.x that should be taken into consideration before
upgrading.

10.9.1 Configuration changes

• The configuration option xdp_quic-log has been replaced with a more general logging option quic, which
applies to both conventional QUIC and QUIC over XDP.

10.9. Upgrade 3.2.x to 3.3.x 165

Knot DNS Documentation, Release 3.4.0

10.9.2 Functionality

• Responses to forwarded DDNS requests are signed with the local TSIG key instead of the remote one if the
TSIG secret is known. To forward DDNS requests signed with a locally unknown key, an ACL rule for the
action update without a key must be configured for the zone.

• Addresses for the remote which is considered the source of the NOTIFY are tried in the order they are
specified in the remote configuration, regardless of which address the NOTIFY came from.

• Semantic checks don't allow DS record at non-delegation point.

• The Version: prefix has been removed from the status version control output.

• DNS over QUIC requires doqALPN. The previous versions doq-i03 and doq-i11 are no longer supported.

10.9.3 XDP

The embedded library libbpf has been removed from the project, and an external one is required for the XDP
support. If libbpf is version 1.0 or higher, an additional library libxdp is also required.

10.9.4 Query module API change

The function knotd_qdata_local_addr() only takes one parameter.

10.10 Upgrade 3.3.x to 3.4.x

There are the following changes between Knot DNS versions 3.4.x and 3.3.x.

10.10.1 DNSSEC

• DNSSEC validation fails if the remaining RRSIG validity is shorter than the corresponding rrsig-refresh
value.

• SKR verification fails if the end of a DNSKEY RRSIG validity period doesn't cover the next DNSKEY
snapshot.

• If DNSSEC signing is enabled, the outbound request's EDNS expire value is lowered to the earliest RRSIG
expiration if it is higher.

10.10.2 Semantic checks

• Just one SOA record is required.

• Unified DNAME and CNAME semantic checks (see Handling CNAME and DNAME-related updates).

10.10.3 Configuration changes

• The server no longer allows concurrent control zone and configuration transactions.

• The server no longer allows opening a zone transaction when a blocking command is running.

• Removed already ignored obsolete options:

– server.max-ipv4-udp-payload

– server.max-ipv6-udp-payload

– server.max-udp-payload

10.10. Upgrade 3.3.x to 3.4.x 166

Knot DNS Documentation, Release 3.4.0

– server.max-tcp-clients

– server.tcp-handshake-timeout

– server.tcp-reply-timeout

– server.listen-xdp

– xdp.quic-log

– zone.max-journal-depth

– zone.max-journal-usage

– zone.max-refresh-interval

– zone.min-refresh-interval

– zone.max-zone-size

– zone.disable-any

– template.journal-db

– template.kasp-db

– template.timer-db

– template.max-journal-db-size

– template.max-timer-db-size

– template.max-kasp-db-size

– template.journal-db-mode

10.10.4 Utilities

• Changed defaults:

– kdig: enabled +edns and +bufsize=1232

• Removed legacy parameters:

– keymgr: --brief

– kjournalprint: --no-color

– kjournalprint: database specification without --dir

– kjournalprint: database specification without --dir

10.10.5 Documentation

• Info pages are no longer supported.

10.10.6 Building notes

• A GCC or LLVM Clang compiler with C11 support is required.

• Minimum required GnuTLS version is 3.6.10.

• Libidn version 1 is no longer supported.

• Liburcu must be available via pkg-config.

• Linux distributions CentOS 7, Debian 10, and Ubuntu 18.04 are no longer supported.

10.10. Upgrade 3.3.x to 3.4.x 167

Knot DNS Documentation, Release 3.4.0

10.11 Knot DNS for BIND users

10.11.1 Automatic DNSSEC signing

Migrating automatically signed zones from BIND to Knot DNS requires copying up-to-date zone files from BIND,
importing existing private keys, and updating server configuration:

1. To obtain current content of the zone which is being migrated, request BIND to flush the zone into the zone
file: rndc sync example.com.

Note: If dynamic updates (DDNS) are enabled for the given zone, you might need to freeze the zone before
flushing it. That can be done similarly:

$ rndc freeze example.com

2. Copy the fresh zone file into the zones storage directory of Knot DNS.

3. Import all existing zone keys into the KASP database. Make sure that all the keys were imported correctly:

$ keymgr example.com. import-bind path/to/Kexample.com.+013+11111
$ keymgr example.com. import-bind path/to/Kexample.com.+013+22222
$...
$ keymgr example.com. list

Note: If the server configuration file or database is not at the default location, add a configuration parameter
(-c or -C). See keymgr for more info about required access rights to the key files.

4. Follow Automatic DNSSEC signing steps to configure DNSSEC signing.

10.11. Knot DNS for BIND users 168

CHAPTER

ELEVEN

APPENDICES

11.1 Compatible PKCS #11 Devices

This section has informative character. Knot DNS has been tested with several devices which claim to support
PKCS #11 interface. The following table indicates which algorithms and operations have been observed to work.
Please notice minimal GnuTLS library version required for particular algorithm support.

Key
gen-
erate

Key
im-
port

ED25519
256-bit

ECDSA
256-bit

ECDSA
384-bit

RSA
1024-
bit

RSA
2048-
bit

RSA
4096-
bit

Feitian ePass 2003 yes no no no no yes yes no
SafeNet Network HSM
(Luna SA 4)

yes no no no no yes yes yes

SoftHSM 2.01 yes yes yes yes yes yes yes yes
Trustway Proteccio
NetHSM

yes ECDSA
only

no yes yes yes yes yes

Ultra Electronics CIS
Keyper Plus (Model
9860-2)

yes RSA
only

no yes yes yes yes yes

Utimaco Security-
Server (V4)2

yes yes no yes yes yes yes yes

1 Algorithms supported depend on support in OpenSSL on which SoftHSM relies. A command similar to the following may be used to
verify what algorithms are supported: $ pkcs11-tool --modul /usr/lib64/pkcs11/libsofthsm2.so -M.

2 Requires setting the number of background workers to 1!

169

https://www.ftsafe.com/Products/PKI/Standard
https://safenet.gemalto.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-sa-network-hsm/
https://safenet.gemalto.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-sa-network-hsm/
https://www.opendnssec.org/softhsm/
https://atos.net/en/solutions/cyber-security/data-protection-and-governance/hardware-security-module-trustway-proteccio-nethsm
https://atos.net/en/solutions/cyber-security/data-protection-and-governance/hardware-security-module-trustway-proteccio-nethsm
https://www.ultra.group/our-business-units/intelligence-communications/cyber/key-management/#acc-keyperplus
https://www.ultra.group/our-business-units/intelligence-communications/cyber/key-management/#acc-keyperplus
https://www.ultra.group/our-business-units/intelligence-communications/cyber/key-management/#acc-keyperplus
https://hsm.utimaco.com/products-hardware-security-modules/general-purpose-hsm/securityserver-cse/
https://hsm.utimaco.com/products-hardware-security-modules/general-purpose-hsm/securityserver-cse/

INDEX

R
RFC

RFC 1034, 91
RFC 1035#section-4.2.1, 148
RFC 2308#section-2.2, 122
RFC 3658, 91
RFC 4035#section-2.2, 87
RFC 4892, 56
RFC 5001, 56
RFC 5011, 35, 138
RFC 5155, 152
RFC 6672, 91
RFC 6781, 35, 139
RFC 6781#section-4.1.1, 37
RFC 6781#section-4.1.2, 36
RFC 6979, 84
RFC 7129#appendix-A, 111
RFC 7314, 34, 75
RFC 7468, 45
RFC 7512, 72
RFC 7583, 139
RFC 7858, 23
RFC 7858#section-4.1, 147
RFC 7858#section-4.2, 147
RFC 7871, 61
RFC 7873, 100
RFC 7873#section-7.1, 101
RFC 8198, 112
RFC 9103#section-9, 21
RFC 9103#section-9.3.1, 20
RFC 9103#section-9.3.2, 20
RFC 9103#section-9.3.3, 23
RFC 9250, 19
RFC 9250#section-5.5.3, 21
RFC 9432, 16
RFC 9615, 99

170

	Introduction
	What is Knot DNS
	Knot DNS features
	License

	Requirements
	Hardware
	CPU requirements
	Network card
	Memory requirements

	Operating system
	Required libraries
	Optional libraries

	Installation
	Installation from a package
	Installation from source code
	Required build environment
	Getting the source code
	Configuring and generating Makefiles
	Compilation
	Installation

	Configuration
	Simple configuration
	Zone templates
	Access control list (ACL)
	Secondary (slave) zone
	Primary (master) zone
	Dynamic updates
	Restricting dynamic updates
	Handling CNAME and DNAME-related updates

	Automatic DNSSEC signing
	Automatic ZSK management
	Automatic KSK management
	Manual key management
	Zone signing
	On-secondary (on-slave) signing

	Catalog zones
	Catalog zones configuration examples

	DNS over QUIC
	Zone transfers
	Opportunistic authentication:
	Strict authentication:
	Mutual authentication:

	DNS over TLS
	Query modules
	Performance Tuning
	Numbers of Workers
	Number of available file descriptors
	Sysctl and NIC optimizations

	Operation
	Configuration database
	Dynamic configuration
	Secondary (slave) mode
	Primary (master) mode
	Reading and editing zones
	Reading and editing the zone file safely
	Zone loading
	Journal behaviour
	Handling zone file, journal, changes, serials
	Example 1
	Example 2
	Example 3
	Example 4

	Zone bootstrapping on secondary
	Zone expiration
	DNSSEC key states
	DNSSEC key rollovers
	Automatic KSK and ZSK rollovers example

	DNSSEC shared KSK
	DNSSEC delete algorithm
	DNSSEC Offline KSK
	Prerequisites
	Generating and signing future ZSKs
	Offline KSK and manual ZSK management
	Offline KSK roll-over
	Emergency SKR

	DNSSEC multi-signer
	Sharing private keys, manual policy
	Sharing private keys, automatic policy
	Distinct keys, DNSKEY record synchronization
	Distinct keys, DNSKEY at common unsigned primary

	DNSSEC keys import to HSM
	Daemon controls
	Logging
	Data and metadata backup
	Online backup
	Offline restore
	Online restore
	Limitations

	Statistics
	Mode XDP
	Pre-requisites
	Optimizations
	Limitations

	Troubleshooting
	Reporting bugs
	Generating backtrace
	Crash caused by a Bus error

	Configuration Reference
	Description
	Comments
	Including configuration
	include

	Clearing configuration sections
	clear

	module section
	id
	file

	server section
	identity
	version
	nsid
	rundir
	user
	pidfile
	udp-workers
	tcp-workers
	background-workers
	async-start
	tcp-idle-timeout
	tcp-io-timeout
	tcp-remote-io-timeout
	tcp-reuseport
	tcp-fastopen
	quic-max-clients
	quic-outbuf-max-size
	quic-idle-close-timeout
	remote-pool-limit
	remote-pool-timeout
	remote-retry-delay
	socket-affinity
	tcp-max-clients
	udp-max-payload
	udp-max-payload-ipv4
	udp-max-payload-ipv6
	key-file
	cert-file
	edns-client-subnet
	answer-rotation
	automatic-acl
	proxy-allowlist
	dbus-event
	dbus-init-delay
	listen
	listen-quic
	listen-tls

	xdp section
	listen
	udp
	tcp
	quic
	quic-port
	tcp-max-clients
	tcp-inbuf-max-size
	tcp-outbuf-max-size
	tcp-idle-close-timeout
	tcp-idle-reset-timeout
	tcp-resend-timeout
	route-check
	ring-size
	busypoll-budget
	busypoll-timeout

	control section
	listen
	backlog
	timeout

	log section
	target
	server
	control
	zone
	quic
	any

	statistics section
	timer
	file
	append

	database section
	storage
	journal-db
	journal-db-mode
	journal-db-max-size
	kasp-db
	kasp-db-max-size
	timer-db
	timer-db-max-size
	catalog-db
	catalog-db-max-size

	keystore section
	id
	backend
	config
	key-label

	key section
	id
	algorithm
	secret

	remote section
	id
	address
	via
	quic
	tls
	key
	cert-key
	block-notify-after-transfer
	no-edns
	automatic-acl

	remotes section
	id
	remote

	acl section
	id
	address
	key
	cert-key
	remote
	action
	deny
	update-type
	update-owner
	update-owner-match
	update-owner-name

	submission section
	id
	parent
	check-interval
	timeout
	parent-delay

	dnskey-sync section
	id
	remote
	check-interval

	policy section
	id
	keystore
	manual
	single-type-signing
	algorithm
	ksk-size
	zsk-size
	ksk-shared
	dnskey-ttl
	zone-max-ttl
	keytag-modulo
	ksk-lifetime
	zsk-lifetime
	delete-delay
	propagation-delay
	rrsig-lifetime
	rrsig-refresh
	rrsig-pre-refresh
	reproducible-signing
	nsec3
	nsec3-iterations
	nsec3-opt-out
	nsec3-salt-length
	nsec3-salt-lifetime
	signing-threads
	ksk-submission
	ds-push
	dnskey-sync
	cds-cdnskey-publish
	cds-digest-type
	dnskey-management
	offline-ksk
	unsafe-operation

	template section
	id
	global-module

	zone section
	domain
	template
	storage
	file
	master
	ddns-master
	notify
	acl
	master-pin-tolerance
	provide-ixfr
	semantic-checks
	default-ttl
	zonefile-sync
	zonefile-load
	journal-content
	journal-max-usage
	journal-max-depth
	ixfr-benevolent
	ixfr-by-one
	ixfr-from-axfr
	zone-max-size
	adjust-threads
	dnssec-signing
	dnssec-validation
	dnssec-policy
	ds-push
	zonemd-verify
	zonemd-generate
	serial-policy
	serial-modulo
	reverse-generate
	refresh-min-interval
	refresh-max-interval
	retry-min-interval
	retry-max-interval
	expire-min-interval
	expire-max-interval
	catalog-role
	catalog-template
	catalog-zone
	catalog-group
	module

	Modules
	authsignal – Automatic Authenticated DNSSEC Bootstrapping records
	Example
	Automatic forward records

	cookies — DNS Cookies
	Example
	Module reference
	id
	secret-lifetime
	badcookie-slip
	secret

	dnsproxy – Tiny DNS proxy
	Example
	Module reference
	id
	remote
	timeout
	address
	fallback
	tcp-fastopen
	catch-nxdomain

	dnstap – Dnstap traffic logging
	Example
	Module reference
	id
	sink
	identity
	version
	log-queries
	log-responses
	responses-with-queries

	geoip — Geography-based responses
	DNSSEC support
	Full zone signing
	Module signing
	Online signing

	Example
	Configuration file
	Module configuration examples
	Using subnets
	Using geographic locations
	Using weighted records

	Module reference
	id
	config-file
	ttl
	mode
	dnssec
	policy
	geodb-file
	geodb-key

	noudp — No UDP response
	Example
	Module reference
	udp-allow-rate
	udp-truncate-rate

	onlinesign — Online DNSSEC signing
	Example
	Module reference
	id
	policy
	nsec-bitmap

	probe — DNS traffic probe
	Example
	Module reference
	id
	path
	channels
	max-rate

	queryacl — Limit queries by remote address or target interface
	Example
	Module reference
	id
	address
	interface

	rrl — Response rate limiting
	Example
	Module reference
	id
	rate-limit
	instant-limit
	slip
	time-rate-limit
	time-instant-limit
	table-size
	whitelist
	log-period
	dry-run

	stats — Query statistics
	Example
	Module reference
	id
	request-protocol
	server-operation
	request-bytes
	response-bytes
	edns-presence
	flag-presence
	response-code
	request-edns-option
	response-edns-option
	reply-nodata
	query-type
	query-size
	reply-size

	synthrecord – Automatic forward/reverse records
	Example
	Automatic forward records
	Automatic reverse records

	Module reference
	id
	type
	prefix
	origin
	ttl
	network
	reverse-short

	whoami — Whoami response
	Example

	Utilities
	knotd – Knot DNS server daemon
	Synopsis
	Description
	Config options
	Options
	Signals

	Exit values
	See Also

	knotc – Knot DNS control utility
	Synopsis
	Description
	Config options
	Options
	Actions
	Notes
	Interactive mode

	Exit values
	Examples
	Reload the whole server configuration
	Flush the example.com and example.org zones
	Get the current server configuration
	Get the list of the current zones
	Get the primary servers for the example.com zone
	Add example.org zone with a zonefile location
	Get the SOA record for each configured zone

	See Also

	keymgr – Key management utility
	Synopsis
	Description
	Parameters
	Config options
	Options
	Commands
	Keystore commands
	Commands related to Offline KSK feature
	Generate arguments
	Timestamps
	Output timestamp formats

	Exit values
	Examples
	See Also

	kjournalprint – Knot DNS journal print utility
	Synopsis
	Description
	Parameters
	Config options
	Options

	Exit values
	Examples
	See Also

	kcatalogprint – Knot DNS catalog print utility
	Synopsis
	Description
	Config options
	Options

	Exit values
	See Also

	kzonecheck – Knot DNS zone file checking tool
	Synopsis
	Description
	Parameters
	Options

	Exit values
	See Also

	kzonesign – DNSSEC signing utility
	Synopsis
	Description
	Parameters
	Config options
	Options

	Exit values
	See Also

	kdig – Advanced DNS lookup utility
	Synopsis
	Description
	Parameters
	Query classes
	Query types
	Options

	Notes
	Exit values
	Examples
	Files
	See Also

	khost – Simple DNS lookup utility
	Synopsis
	Description
	Parameters
	Options

	Exit values
	Examples
	Files
	See Also

	knsec3hash – NSEC hash computation utility
	Synopsis
	Description
	Parameters
	Options

	Exit values
	Examples
	See Also

	knsupdate – Dynamic DNS update utility
	Synopsis
	Description
	Parameters
	Options
	QUIC/TLS options
	Commands

	Notes
	Interactive mode

	Exit values
	Examples
	See Also

	kxdpgun – DNS benchmarking tool
	Synopsis
	Description
	Parameters
	Options
	Queries file format
	TCP/QUIC debug modes
	Signals

	Notes
	Exit values
	Examples
	See Also

	Migration
	Upgrade 2.4.x to 2.5.x
	Building changes
	KASP DB migration
	Configuration changes

	Upgrade 2.5.x to 2.6.x
	Configuration changes

	Upgrade 2.6.x to 2.7.x
	Upgrade 2.7.x to 2.8.x
	Upgrade 2.8.x to 2.9.x
	Configuration changes
	Miscellaneous changes

	Upgrade 2.9.x to 3.0.x
	ACL
	Module synthrecord
	Query module API change
	Building notes

	Upgrade 3.0.x to 3.1.x
	Configuration changes
	Zone backup and restore
	Building notes
	Packaging

	Upgrade 3.1.x to 3.2.x
	Configuration changes
	Utilities:
	Packaging
	Python

	Upgrade 3.2.x to 3.3.x
	Configuration changes
	Functionality
	XDP
	Query module API change

	Upgrade 3.3.x to 3.4.x
	DNSSEC
	Semantic checks
	Configuration changes
	Utilities
	Documentation
	Building notes

	Knot DNS for BIND users
	Automatic DNSSEC signing

	Appendices
	Compatible PKCS #11 Devices

	Index

