Modules¶
authsignal
– Automatic Authenticated DNSSEC Bootstrapping records¶
This module is able to synthesize records for automatic DNSSEC bootstrapping (RFC 9615).
Records are synthesized only if the query can't be satisfied from the zone.
Synthesized records also need to be signed. Typically, this can be done using the onlinesign module, as shown below.
Example¶
Automatic forward records¶
mod-onlinesign:
- id: authsignal
nsec-bitmap: [CDS, CDNSKEY]
zone:
- domain: example.net
dnssec-signing: on
- domain: _signal.ns1.example.com
module: [mod-authsignal, mod-onlinesign/authsignal]
Result:
$ kdig CDS _dsboot.example.net._signal.ns1.example.com.
...
;; QUESTION SECTION:
;; _dsboot.example.net._signal.ns1.example.com. IN CDS
;; ANSWER SECTION:
_dsboot.example.net._signal.ns1.example.com. 0 IN CDS 45504 13 2 2F2D518FD9DBB2B1403F51398A9931F2832B89F0F85C146B130D383FC23584FA
dnsproxy
– Tiny DNS proxy¶
The module forwards all queries, or all specific zone queries if configured per zone, to the indicated server for resolution. If configured in the fallback mode, only locally unsatisfied queries are forwarded. I.e. a tiny DNS proxy. There are several uses of this feature:
A substitute public-facing server in front of the real one
Local zones (poor man's "views"), rest is forwarded to the public-facing server
Using the fallback to forward queries to a resolver
etc.
Note
The module does not alter the query/response as the resolver would, and the original transport protocol is kept as well.
Example¶
The configuration is straightforward and just a single remote server is required:
remote:
- id: hidden
address: 10.0.1.1
mod-dnsproxy:
- id: default
remote: hidden
fallback: on
template:
- id: default
global-module: mod-dnsproxy/default
zone:
- domain: local.zone
When clients query for anything in the local.zone
, they will be responded to locally. The rest of the requests will be forwarded to the specified server (10.0.1.1
in this case).
Module reference¶
mod-dnsproxy:
- id: STR
remote: remote_id
timeout: INT
address: ADDR[/INT] | ADDR-ADDR | STR ...
fallback: BOOL
tcp-fastopen: BOOL
catch-nxdomain: BOOL
id¶
A module identifier.
remote¶
A reference to a remote server where the queries are forwarded to.
Required
Note
If the remote has more addresses configured, other addresses are used sequentially as fallback. In this case, for the N-th address the N-th via address is taken if configured.
timeout¶
A remote response timeout in milliseconds.
Default: 500
(milliseconds)
address¶
An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. If the query's source address does not fall into any of the configured ranges, the query isn't forwarded.
Default: not set
fallback¶
If enabled, locally unsatisfied queries leading to REFUSED (no zone) are forwarded. If disabled, all queries are directly forwarded without any local attempts to resolve them.
Default: on
tcp-fastopen¶
If enabled, TCP Fast Open is used when forwarding TCP queries.
Default: off
catch-nxdomain¶
If enabled, locally unsatisfied queries leading to NXDOMAIN are forwarded. This option is only relevant in the fallback mode.
Default: off
dnstap
– Dnstap traffic logging¶
A module for query and response logging based on the dnstap library. You can capture either all or zone-specific queries and responses; usually you want to do the former.
Example¶
The configuration comprises only a sink path parameter, which can be either a file, a UNIX socket, or a TCP address:
mod-dnstap:
- id: capture_all
sink: /tmp/capture.tap
template:
- id: default
global-module: mod-dnstap/capture_all
Note
To be able to use a Unix socket you need an external program to create it. Knot DNS connects to it as a client using the libfstrm library. It operates exactly like syslog.
Note
Dnstap log files can also be created or read using kdig.
Module reference¶
For all queries logging, use this module in the default template. For zone-specific logging, use this module in the proper zone configuration.
mod-dnstap:
- id: STR
sink: STR
identity: STR
version: STR
log-queries: BOOL
log-responses: BOOL
responses-with-queries: BOOL
id¶
A module identifier.
sink¶
A sink path, which can be either a file, a UNIX socket when prefixed with unix:
, or a TCP address@port when prefixed with tcp:
. The file may be specified as an absolute path or a path relative to the knotd startup directory.
Required
Warning
File is overwritten on server startup or reload.
identity¶
A DNS server identity. Set empty value to disable.
Default: FQDN hostname
version¶
A DNS server version. Set empty value to disable.
Default: server version
log-queries¶
If enabled, query messages will be logged.
Default: on
log-responses¶
If enabled, response messages will be logged.
Default: on
responses-with-queries¶
If enabled, dnstap AUTH_RESPONSE
messages will also include the original query message as well as the response message sent by the server.
Default: off
geoip
— Geography-based responses¶
This module offers response tailoring based on client's subnet, geographic location, or a statistical weight. It supports GeoIP databases in the MaxMind DB format, such as GeoIP2 or the free version GeoLite2.
The module can be enabled only per zone.
Note
If EDNS Client Subnet support is enabled and if a query contains this option, the module takes advantage of this information to provide a more accurate response.
DNSSEC support¶
There are several ways to enable DNSSEC signing of tailored responses.
Full zone signing¶
If automatic DNSSEC signing is enabled, the whole zone is signed by the server and all alternative RRsets, which are responded by the module, are pre-signed when the module is loaded.
This has a speed benefit, however note that every RRset configured in the module should have a default RRset of the same type contained in the zone, so that the NSEC(3) chain can be built correctly. Also, it is STRONGLY RECOMMENDED to use manual key management in this setting, as the corresponding zone has to be reloaded when the signing key changes and to have better control over key synchronization to all instances of the server.
Note
DNSSEC keys for computing record signatures MUST exist in the KASP database or be generated before the module is launched, otherwise the module fails to compute the signatures and does not load.
Module signing¶
If automatic DNSSEC signing is disabled, it's possible to combine externally pre-signed zone with module pre-signing of the alternative RRsets when the module is loaded. In this mode, only ZSK has to be present in the KASP database. Also in this mode every RRset configured in the module should have a default RRset of the same type contained in the zone.
Example:
policy:
- id: presigned_zone
manual: on
unsafe-operation: no-check-keyset
mod-geoip:
- id: geo_dnssec
...
dnssec: on
policy: presigned_zone
zone:
- domain: example.com.
module: mod-geoip/geo_dnssec
Online signing¶
Alternatively, the geoip module may be combined with the onlinesign module and the tailored responses can be signed on the fly. This approach is much more computationally demanding for the server.
Note
If the GeoIP module is used with online signing, it is recommended to set the nsec-bitmap option of the onlinesign module to contain all Resource Record types potentially generated by the module.
Example¶
An example configuration:
mod-geoip:
- id: default
config-file: /path/to/geo.conf
ttl: 20
mode: geodb
geodb-file: /path/to/GeoLite2-City.mmdb
geodb-key: [ country/iso_code, city/names/en ]
zone:
- domain: example.com.
module: mod-geoip/default
Configuration file¶
Every instance of the module requires an additional config-file in which the desired responses to queries from various locations are configured. This file has the following simple format:
domain-name1:
- geo|net|weight: value1
RR-Type1: RDATA
RR-Type2: RDATA
...
- geo|net|weight: value2
RR-Type1: RDATA
...
domain-name2:
...
Module configuration examples¶
This section contains some examples for the module's config-file.
Using subnets¶
foo.example.com:
- net: 10.0.0.0/24
A: [ 192.168.1.1, 192.168.1.2 ]
AAAA: [ 2001:DB8::1, 2001:DB8::2 ]
TXT: "subnet\ 10.0.0.0/24"
...
bar.example.com:
- net: 2001:DB8::/32
A: 192.168.1.3
AAAA: 2001:DB8::3
TXT: "subnet\ 2001:DB8::/32"
...
Clients from the specified subnets will receive the responses defined in the module config. Others will receive the default records defined in the zone (if any).
Note
If a space or a quotation mark is a part of record data, such a character must be prefixed with a backslash. The following notations are equivalent:
Multi-word\ string
"Multi-word\ string"
"\"Multi-word string\""
Using geographic locations¶
foo.example.com:
- geo: "CZ;Prague"
CNAME: cz.foo.example.com.
- geo: "US;Las Vegas"
CNAME: vegas.foo.example.net.
- geo: "US;*"
CNAME: us.foo.example.net.
...
Clients from the specified geographic locations will receive the responses defined in the module config. Others will receive the default records defined in the zone (if any). See geodb-key for the syntax and semantics of the location definitions.
Using weighted records¶
foo.example.com:
- weight: 1
CNAME: canary.foo.example.com.
- weight: 10
CNAME: prod1.foo.example.com.
- weight: 10
CNAME: prod2.foo.example.com.
...
Each response is generated through a random pick where each defined record has a likelihood of its weight over the sum of all weights for the requested name to. Records defined in the zone itself (if any) will never be served.
Result:
$ for i in $(seq 1 100); do kdig @192.168.1.242 CNAME foo.example.com +short; done | sort | uniq -c
3 canary.foo.example.com.foo.example.com.
52 prod1.foo.example.net.foo.example.com.
45 prod2.foo.example.net.foo.example.com.
Module reference¶
mod-geoip:
- id: STR
config-file: STR
ttl: TIME
mode: geodb | subnet | weighted
dnssec: BOOL
policy: policy_id
geodb-file: STR
geodb-key: STR ...
id¶
A module identifier.
config-file¶
A path to the response configuration file as described above. A non-absolute path is relative to the knotd startup directory.
Required
ttl¶
The time to live of Resource Records returned by the module, in seconds.
Default: 60
mode¶
The mode of operation of the module.
Possible values:
subnet
– Responses are tailored according to subnets.geodb
– Responses are tailored according to geographic data retrieved from the configured database.weighted
– Responses are tailored according to a statistical weight.
Default: subnet
dnssec¶
If explicitly enabled, the module signs positive responses based on the module policy (policy). If explicitly disabled, positive responses from the module are not signed even if the zone is pre-signed or signed by the server (dnssec-signing).
Warning
This configuration must be used carefully. Otherwise the zone responses can be bogus. DNSKEY rotation isn't supported. So manual mode is highly recommended.
Default: current value of dnssec-signing with dnssec-policy
policy¶
A reference to DNSSEC signing policy which is used if dnssec is enabled.
Default: an imaginary policy with all default values
geodb-file¶
A path to a .mmdb file containing the GeoIP database. A non-absolute path is relative to the knotd startup directory.
Required if mode is set to geodb
geodb-key¶
Multi-valued item, can be specified up to 8 times. Each geodb-key specifies a path to a key in a node in the supplied GeoIP database. The module currently supports two types of values: string or 32-bit unsigned int. In the latter case, the key has to be prefixed with (id). Common choices of keys include:
continent/code
country/iso_code
(id)country/geoname_id
city/names/en
(id)city/geoname_id
isp
...
The exact keys available depend on the database being used. To get the full list of keys available, you can e.g. do a sample lookup on your database with the mmdblookup tool.
In the zone's config file for the module the values of the keys are entered in the same order as the keys in the module's configuration, separated by a semicolon. Enter the value "*" if the key is allowed to have any value.
noudp
— No UDP response¶
The module sends empty truncated reply to a query over UDP. Replies over TCP are not affected.
Example¶
To enable this module for all configured zones and every UDP reply:
template:
- id: default
global-module: mod-noudp
Or with specified UDP allow rate:
mod-noudp:
- id: sometimes
udp-allow-rate: 1000 # Don't truncate every 1000th UDP reply
template:
- id: default
module: mod-noudp/sometimes
Module reference¶
mod-noudp:
- id: STR
udp-allow-rate: INT
udp-truncate-rate: INT
Note
Both udp-allow-rate and udp-truncate-rate cannot be specified together.
udp-allow-rate¶
Specifies frequency of UDP replies that are not truncated. A non-zero value means that every Nth UDP reply is not truncated.
Note
The rate value is associated with one UDP worker. If more UDP workers are configured, the specified value may not be obvious to clients.
Default: not set
udp-truncate-rate¶
Specifies frequency of UDP replies that are truncated (opposite of udp-allow-rate). A non-zero value means that every Nth UDP reply is truncated.
Note
The rate value is associated with one UDP worker. If more UDP workers are configured, the specified value may not be obvious to clients.
Default: 1
onlinesign
— Online DNSSEC signing¶
The module provides online DNSSEC signing. Instead of pre-computing the zone signatures when the zone is loaded into the server or instead of loading an externally signed zone, the signatures are computed on-the-fly during answering.
The main purpose of the module is to enable authenticated responses with zones which use other dynamic module (e.g., automatic reverse record synthesis) because these zones cannot be pre-signed. However, it can be also used as a simple signing solution for zones with low traffic and also as a protection against zone content enumeration (zone walking).
In order to minimize the number of computed signatures per query, the module produces a bit different responses from the responses that would be sent if the zone was pre-signed. Still, the responses should be perfectly valid for a DNSSEC validating resolver.
Differences from statically signed zones:
The NSEC records are constructed as Minimally Covering NSEC Records (RFC 7129#appendix-A). Therefore the generated domain names cover the complete domain name space in the zone's authority.
NXDOMAIN responses are promoted to NODATA responses. The module proves that the query type does not exist rather than that the domain name does not exist.
Domain names matching a wildcard are expanded. The module pretends and proves that the domain name exists rather than proving a presence of the wildcard.
Records synthesized by the module:
DNSKEY record is synthesized in the zone apex and includes public key material for the active signing key.
NSEC records are synthesized as needed.
RRSIG records are synthesized for authoritative content of the zone.
CDNSKEY and CDS records are generated as usual to publish valid Secure Entry Point.
Limitations:
Due to limited interaction between the server and the module, after any change to KASP DB (including knotc zone-ksk-submitted command) or when a scheduled DNSSEC event shall be processed (e.g. transition to next DNSKEY rollover state) the server must be reloaded or queried to the zone (with the DO bit set) to apply the change or to trigger the event. For optimal operation, the recommended query frequency is at least ones per second for each zone configured.
The NSEC records may differ for one domain name if queried for different types. This is an implementation shortcoming as the dynamic modules cooperate loosely. Possible synthesis of a type by other module cannot be predicted. This dissimilarity should not affect response validation, even with validators performing aggressive negative caching (RFC 8198).
The module isn't compatible with the Offline KSK mode yet.
Recommendations:
Configure the module with an explicit signing policy which has the rrsig-lifetime value in the order of hours.
Note that single-type-signing should be set explicitly to avoid fallback to backward-compatible default.
Example¶
Enable the module in the zone configuration with the default signing policy:
zone: - domain: example.com module: mod-onlinesign
Or with an explicit signing policy:
policy: - id: rsa algorithm: RSASHA256 ksk-size: 2048 rrsig-lifetime: 25h rrsig-refresh: 20h mod-onlinesign: - id: explicit policy: rsa zone: - domain: example.com module: mod-onlinesign/explicit
Or use manual policy in an analogous manner, see Manual key management.
Make sure the zone is not signed and also that the automatic signing is disabled. All is set, you are good to go. Reload (or start) the server:
$ knotc reload
The following example stacks the online signing with reverse record synthesis module:
mod-synthrecord:
- id: lan-forward
type: forward
prefix: ip-
ttl: 1200
network: 192.168.100.0/24
zone:
- domain: corp.example.net
module: [mod-synthrecord/lan-forward, mod-onlinesign]
Module reference¶
mod-onlinesign:
- id: STR
policy: policy_id
nsec-bitmap: STR ...
id¶
A module identifier.
policy¶
A reference to DNSSEC signing policy. A special default value can be used for the default policy setting.
Default: an imaginary policy with all default values
nsec-bitmap¶
A list of Resource Record types included in an NSEC bitmap generated by the module. This option should reflect zone contents or synthesized responses by modules, such as synthrecord and GeoIP.
Default: [A, AAAA]
probe
— DNS traffic probe¶
The module allows the server to send simplified information about regular DNS traffic through UNIX sockets. The exported information consists of data blocks where each data block (datagram) describes one query/response pair. The response part can be empty. The receiver can be an arbitrary program using libknot interface (C or Python). In case of high traffic, more channels (sockets) can be configured to allow parallel processing.
Note
A simple probe client in Python.
Example¶
Default module configuration:
template:
- id: default
global-module: mod-probe
Per zone probe with 8 channels and maximum 1M logs per second limit:
mod-probe:
- id: custom
path: /tmp/knot-probe
channels: 8
max-rate: 1000000
zone:
- domain: example.com.
module: mod-probe/custom
Module reference¶
mod-probe:
- id: STR
path: STR
channels: INT
max-rate: INT
id¶
A module identifier.
path¶
A directory path where the UNIX sockets are located. A non-absolute path is relative to the knotd startup directory.
Note
It's recommended to use a directory with the execute permission restricted to the intended probe consumer process owner only.
Default: rundir
channels¶
Number of channels (UNIX sockets) the traffic is distributed to. In case of high DNS traffic which is beeing processed by many UDP/XDP/TCP workers, using more channels reduces the module overhead.
Default: 1
max-rate¶
Maximum number of queries/replies per second the probe is allowed to transfer. If the limit is exceeded, the over-limit traffic is ignored. Zero value means no limit.
Default: 100000
(one hundred thousand)
queryacl
— Limit queries by remote address or target interface¶
This module provides a simple way to whitelist incoming queries according to the query's source address or target interface. It can be used e.g. to create a restricted-access subzone with delegations from the corresponding public zone. The module may be enabled both globally and per-zone.
Note
The module limits only regular queries. Notify, transfer and update are handled by ACL.
Example¶
mod-queryacl:
- id: default
address: [192.0.2.73-192.0.2.90, 203.0.113.0/24]
interface: 198.51.100
zone:
- domain: example.com
module: mod-queryacl/default
Module reference¶
mod-queryacl:
- id: STR
address: ADDR[/INT] | ADDR-ADDR | STR ...
interface: ADDR[/INT] | ADDR-ADDR | STR ...
id¶
A module identifier.
address¶
An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. If the query's address does not fall into any of the configured ranges, NOTAUTH rcode is returned.
Default: not set
interface¶
An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges. If the interface does not fall into any of the configured ranges, NOTAUTH rcode is returned. Note that every interface used has to be configured in listen.
Note
Don't use values 0.0.0.0 and ::0. These values are redundant and don't work as expected.
Default: not set
rrl
— Response rate limiting¶
Response rate limiting (RRL) is a method to combat DNS reflection amplification attacks. These attacks rely on the fact that the source address of a UDP query can be forged, and without a worldwide deployment of BCP38, such a forgery cannot be prevented. An attacker can use a DNS server (or multiple servers) as an amplification source to flood a victim with a large number of unsolicited DNS responses. RRL lowers the amplification factor of these attacks by sending some responses as truncated or by dropping them altogether.
This module can also help protect the server from excessive utilization by limiting incoming packets (including handshakes) based on consumed time. If a packet is time rate limited, it's dropped. This function works with all supported non-UDP transport protocols and cannot be configured per zone.
Note
This module introduces three statistics counters:
slipped
– The number of slipped UDP responses.dropped
– The number of dropped UDP responses due to the rate limit.dropped-time
– The number of dropped non-UDP packets due to the time rate limit.
Note
If the Cookies module is active, RRL is not applied to UDP responses with a valid DNS cookie.
Example¶
You can enable RRL by setting the module globally
template:
- id: default
global-module: mod-rrl # Default module configuration
or per zone
mod-rrl:
- id: custom
rate-limit: 200
zone:
- domain: example.com
module: mod-rrl/custom # Custom module configuration
Module reference¶
mod-rrl:
- id: STR
rate-limit: INT
instant-limit: INT
slip: INT
time-rate-limit: INT
time-instant-limit: INT
table-size: INT
whitelist: ADDR[/INT] | ADDR-ADDR | STR ...
log-period: INT
dry-run: BOOL
id¶
A module identifier.
rate-limit¶
Maximal allowed number of UDP queries per second from a single IPv6 or IPv4 address.
Rate limiting is performed for the whole address and several chosen prefixes. The limits of prefixes are constant multiples of rate-limit.
The specific prefixes and multipliers, which might be adjusted in the future, are for IPv6 /128: 1, /64: 2, /56: 3, /48: 4, /32: 64; for IPv4 /32: 1, /24: 32, /20: 256, /18: 768.
With each host/network, a counter of unrestricted responses is associated; if the counter would exceed its capacity, it is not incremented and the response is restricted. Counters use exponential decay for lowering their values, i.e. they are lowered by a constant fraction of their value each millisecond. The specified rate limit is reached, when the number of queries is the same every millisecond; sending many queries once a second or even a larger timespan leads to a more strict limiting.
Default: 20
instant-limit¶
Maximal allowed number of queries at a single point in time from a single IPv6 or IPv4 address. The limits for prefixes use the same multipliers as for rate-limit.
This limit is reached when many queries come from a new host/network, or after a longer time of inactivity.
The instant-limit sets the actual capacity of each counter of responses, and together with the rate-limit they set the fraction by which the counter is periodically lowered. The instant-limit may be at least rate-limit / 1000, at which point the counters are zeroed each millisecond.
Default: 50
slip¶
As attacks using DNS/UDP are usually based on a forged source address, an attacker could deny services to the victim's netblock if all responses would be completely blocked. The idea behind SLIP mechanism is to send each Nth response as truncated, thus allowing client to reconnect via TCP for at least some degree of service. It is worth noting, that some responses can't be truncated (e.g. SERVFAIL).
Setting the value to 0 will cause that all rate-limited responses will be dropped. The outbound bandwidth and packet rate will be strictly capped by the rate-limit option. All legitimate requestors affected by the limit will face denial of service and will observe excessive timeouts. Therefore this setting is not recommended.
Setting the value to 1 will cause that all rate-limited responses will be sent as truncated. The amplification factor of the attack will be reduced, but the outbound data bandwidth won't be lower than the incoming bandwidth. Also the outbound packet rate will be the same as without RRL.
Setting the value to 2 will cause that approximately half of the rate-limited responses will be dropped, the other half will be sent as truncated. With this configuration, both outbound bandwidth and packet rate will be lower than the inbound. On the other hand, the dropped responses enlarge the time window for possible cache poisoning attack on the resolver.
Setting the value to anything larger than 2 will keep on decreasing the outgoing rate-limited bandwidth, packet rate, and chances to notify legitimate requestors to reconnect using TCP. These attributes are inversely proportional to the configured value. Setting the value high is not advisable.
Default: 1
time-rate-limit¶
This limit works similarly to rate-limit but considers the time consumed (in microseconds) by the remote over non-UDP transport protocols.
Default: 4000
(microseconds)
time-instant-limit¶
This limit works similarly to instant-limit but considers the time consumed (in microseconds) by the remote over non-UDP transport protocols.
Default: 5000
(microseconds)
table-size¶
Maximal number of stored hosts/networks with their counters. The data structure tries to store only the most frequent sources, so it is safe to set it according to the expected maximal number of limited ones.
Use 1.4 * maximum_qps / rate-limit, where maximum_qps is the number of queries which can be handled by the server per second. There is at most maximum_qps / rate-limit limited hosts; larger networks have higher limits and so require only a fraction of the value (handled by the 1.4 multiplier). The value will be rounded up to the nearest power of two.
The same table size is used for both counting-based and time-based limiting; the maximum number of time-limited hosts is expected to be lower, so it's not typically needed to be considered. There is at most 1 000 000 * #cpus / time-rate-limit of them.
The memory occupied by one table structure is 8 * table-size B.
Default: 524288
whitelist¶
An ordered list of IP addresses, absolute UNIX socket paths, network subnets, or network ranges to exempt from rate limiting. Empty list means that no incoming connection will be white-listed.
Default: not set
log-period¶
Minimal time in milliseconds between two log messages, or zero to disable logging.
If a response is limited, the address and the prefix on which it was blocked is logged and logging is disabled for the log-period milliseconds. As long as limiting is needed, one source is logged each period and sources with more blocked queries have greater probability to be chosen.
The approach is used by counting-based and time-based limiting separately, so you can expect one message per log-period from each of them.
Default: 0
(disabled)
dry-run¶
If enabled, the module doesn't alter any response. Only query classification is performed with possible statistics counter incrementation.
Default: off
stats
— Query statistics¶
The module extends server statistics with incoming DNS request and corresponding response counters, such as used network protocol, total number of responded bytes, etc (see module reference for full list of supported counters). This module should be configured as the last module.
Note
Server initiated communication (outgoing NOTIFY, incoming *XFR,...) is not counted by this module.
Note
Leading 16-bit message size over TCP is not considered.
Example¶
Common statistics with default module configuration:
template:
- id: default
global-module: mod-stats
Per zone statistics with explicit module configuration:
mod-stats:
- id: custom
edns-presence: on
query-type: on
template:
- id: default
module: mod-stats/custom
Module reference¶
mod-stats:
- id: STR
request-protocol: BOOL
server-operation: BOOL
request-bytes: BOOL
response-bytes: BOOL
edns-presence: BOOL
flag-presence: BOOL
response-code: BOOL
request-edns-option: BOOL
response-edns-option: BOOL
reply-nodata: BOOL
query-type: BOOL
query-size: BOOL
reply-size: BOOL
id¶
A module identifier.
request-protocol¶
If enabled, all incoming requests are counted by the network protocol:
udp4 - UDP over IPv4
tcp4 - TCP over IPv4
quic4 - QUIC over IPv4
tls4 - TLS over IPv4
udp6 - UDP over IPv6
tcp6 - TCP over IPv6
quic6 - QUIC over IPv6
tls6 - TLS over IPv6
udp4-xdp - UDP over IPv4 through XDP
tcp4-xdp - TCP over IPv4 through XDP
quic4-xdp - QUIC over IPv4 through XDP
udp6-xdp - UDP over IPv6 through XDP
tcp6-xdp - TCP over IPv6 through XDP
quic6-xdp - QUIC over IPv6 through XDP
Default: on
server-operation¶
If enabled, all incoming requests are counted by the server operation. The server operation is based on message header OpCode and message query (meta) type:
query - Normal query operation
update - Dynamic update operation
notify - NOTIFY request operation
axfr - Full zone transfer operation
ixfr - Incremental zone transfer operation
invalid - Invalid server operation
Default: on
request-bytes¶
If enabled, all incoming request bytes are counted by the server operation:
query - Normal query bytes
update - Dynamic update bytes
other - Other request bytes
Default: on
response-bytes¶
If enabled, outgoing response bytes are counted by the server operation:
reply - Normal response bytes
transfer - Zone transfer bytes
other - Other response bytes
Warning
Dynamic update response bytes are not counted by this module.
Default: on
edns-presence¶
If enabled, EDNS pseudo section presence is counted by the message direction:
request - EDNS present in request
response - EDNS present in response
Default: off
flag-presence¶
If enabled, some message header flags are counted:
TC - Truncated Answer in response
DO - DNSSEC OK in request
Default: off
response-code¶
If enabled, outgoing response code is counted:
NOERROR
...
NOTZONE
BADVERS
...
BADCOOKIE
other - All other codes
Note
In the case of multi-message zone transfer response, just one counter is incremented.
Warning
Dynamic update response code is not counted by this module.
Default: on
request-edns-option¶
If enabled, EDNS options in requests are counted by their code:
CODE0
...
EDNS-KEY-TAG (CODE14)
other - All other codes
Default: off
response-edns-option¶
If enabled, EDNS options in responses are counted by their code. See request-edns-option.
Default: off
query-type¶
If enabled, normal query type is counted:
A (TYPE1)
...
TYPE65
SPF (TYPE99)
...
TYPE110
ANY (TYPE255)
...
TYPE260
other - All other types
Note
Not all assigned meta types (IXFR, AXFR,...) have their own counters, because such types are not processed as normal query.
Default: off
query-size¶
If enabled, normal query message size distribution is counted by the size range in bytes:
0-15
16-31
...
272-287
288-65535
Default: off
synthrecord
– Automatic forward/reverse records¶
This module is able to synthesize either forward or reverse records for a given prefix and subnet.
Records are synthesized only if the query can't be satisfied from the zone. Both IPv4 and IPv6 are supported.
Example¶
Automatic forward records¶
mod-synthrecord:
- id: test1
type: forward
prefix: dynamic-
ttl: 400
network: 2620:0:b61::/52
zone:
- domain: test.
file: test.zone # Must exist
module: mod-synthrecord/test1
Result:
$ kdig AAAA dynamic-2620-0-b61-100--1.test.
...
;; QUESTION SECTION:
;; dynamic-2620-0-b61-100--1.test. IN AAAA
;; ANSWER SECTION:
dynamic-2620-0-b61-100--1.test. 400 IN AAAA 2620:0:b61:100::1
You can also have CNAME aliases to the dynamic records, which are going to be further resolved:
$ kdig AAAA alias.test.
...
;; QUESTION SECTION:
;; alias.test. IN AAAA
;; ANSWER SECTION:
alias.test. 3600 IN CNAME dynamic-2620-0-b61-100--2.test.
dynamic-2620-0-b61-100--2.test. 400 IN AAAA 2620:0:b61:100::2
Automatic reverse records¶
mod-synthrecord:
- id: test2
type: reverse
prefix: dynamic-
origin: test
ttl: 400
network: 2620:0:b61::/52
zone:
- domain: 1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa.
file: 1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa.zone # Must exist
module: mod-synthrecord/test2
Result:
$ kdig -x 2620:0:b61::1
...
;; QUESTION SECTION:
;; 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa. IN PTR
;; ANSWER SECTION:
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.6.b.0.0.0.0.0.0.2.6.2.ip6.arpa. 400 IN PTR dynamic-2620-0-b61--1.test.
Module reference¶
mod-synthrecord:
- id: STR
type: forward | reverse
prefix: STR
origin: DNAME
ttl: INT
network: ADDR[/INT] | ADDR-ADDR ...
reverse-short: BOOL
id¶
A module identifier.
type¶
The type of generated records.
Possible values:
forward
– Forward recordsreverse
– Reverse records
Required
prefix¶
A record owner prefix.
Note
The value doesn’t allow dots, address parts in the synthetic names are separated with a dash.
Default: empty
origin¶
A zone origin (only valid for the reverse type).
Required
ttl¶
Time to live of the generated records.
Default: 3600
network¶
An ordered list of IP addresses, network subnets or network ranges the query must match.
Required
reverse-short¶
If enabled, a shortened IPv6 address can be used for reverse record rdata synthesis.
Default: on
whoami
— Whoami response¶
The module synthesizes an A or AAAA record containing the query source IP address, at the apex of the zone being served. It makes sure to allow Knot DNS to generate cacheable negative responses, and to allow fallback to extra records defined in the underlying zone file. The TTL of the synthesized record is copied from the TTL of the SOA record in the zone file.
Because a DNS query for type A or AAAA has nothing to do with whether the query occurs over IPv4 or IPv6, this module requires a special zone configuration to support both address families. For A queries, the underlying zone must have a set of nameservers that only have IPv4 addresses, and for AAAA queries, the underlying zone must have a set of nameservers that only have IPv6 addresses.
Example¶
To enable this module, you need to add something like the following to the Knot DNS configuration file:
zone:
- domain: whoami.domain.example
file: "/path/to/whoami.domain.example"
module: mod-whoami
zone:
- domain: whoami6.domain.example
file: "/path/to/whoami6.domain.example"
module: mod-whoami
The whoami.domain.example zone file example:
$TTL 1 @ SOA ( whoami.domain.example. ; MNAME hostmaster.domain.example. ; RNAME 2016051300 ; SERIAL 86400 ; REFRESH 86400 ; RETRY 86400 ; EXPIRE 1 ; MINIMUM ) $TTL 86400 @ NS ns1.whoami.domain.example. @ NS ns2.whoami.domain.example. @ NS ns3.whoami.domain.example. @ NS ns4.whoami.domain.example. ns1 A 198.51.100.53 ns2 A 192.0.2.53 ns3 A 203.0.113.53 ns4 A 198.19.123.53
The whoami6.domain.example zone file example:
$TTL 1 @ SOA ( whoami6.domain.example. ; MNAME hostmaster.domain.example. ; RNAME 2016051300 ; SERIAL 86400 ; REFRESH 86400 ; RETRY 86400 ; EXPIRE 1 ; MINIMUM ) $TTL 86400 @ NS ns1.whoami6.domain.example. @ NS ns2.whoami6.domain.example. @ NS ns3.whoami6.domain.example. @ NS ns4.whoami6.domain.example. ns1 AAAA 2001:db8:100::53 ns2 AAAA 2001:db8:200::53 ns3 AAAA 2001:db8:300::53 ns4 AAAA 2001:db8:400::53
The parent domain would then delegate whoami.domain.example to ns[1-4].whoami.domain.example and whoami6.domain.example to ns[1-4].whoami6.domain.example, and include the corresponding A-only or AAAA-only glue records.
Note
This module is not configurable.